Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

The pre-treatment of copper for graphene synthesis

Wang Lang Feng Wei Yang Lian-Qiao Zhang Jian-Hua

The pre-treatment of copper for graphene synthesis

Wang Lang, Feng Wei, Yang Lian-Qiao, Zhang Jian-Hua
PDF
Get Citation
  • Graphene synthesis by chemical-vapor-deposition (CVD) has attracted great interest. As the substrates for graphene growth, copper has become a common choice because its capacity could produce high-quality and uniform monolayer graphene. Morphology and surface conditions of the copper foil have great influence on the quality of the graphene grown on it. Here we report a rapid and effective copper pre-treatment method to improve the quality of graphene. After a pre-etching in 1 mol/L Fe(NO3)3 aqueous solutions for 90 s, the quality of the copper foil surface has been improved. Compared with the HCl treatment and electro-chemical polishing, Fe(NO3)3 pre-etching can generate a better result and has been verified to have general applicability for different types of copper foils.
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2011CB013100), and the National Key Technology Research and Development Program of the Ministry of Science and Technology of China (Grant No. 2011BAE01B14).
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]
    [3]

    Liao L, Lin Y C, Bao M, Cheng R, Bai J, Liu Y, Qu Y, Wang K L, Huang Y, Duan X 2010 Nature 467 305

    [4]
    [5]

    Bae S, Kim H, Lee Y, Xu X, Park J S, Zheng Y, Balakrishnan J, Lei T, Kim H R, Song Y I, Kim Y J, Kim K S, Ozyilmaz B, Ahn J H, Hong B H, Iijima S 2010 Nat. Nanotechnol. 5 574

    [6]

    Qin M M, Ji W, Feng Y Y, Feng W 2014 Chin. Phys. B 23 028103

    [7]
    [8]
    [9]

    Stoller M D, Park S, Zhu Y, An J, Ruoff R S 2008 Nano Lett. 8 3498

    [10]
    [11]

    Ma L, Tan Z B, Tan C L, Liu G T, Yang C L, Lv L 2011 Acta Phys. Sin. 60 107302 (in Chinese)[马丽, 谭振兵, 谭长玲, 刘广同, 杨昌黎, 吕力 2011 物理学报 60 107302]

    [12]

    Park S, An J, Jung I, Piner R D, An S J, Li X, Velamakanni A, Ruoff R S 2009 Nano Lett. 9 1593

    [13]
    [14]
    [15]

    Huang L X, Chen Y F, Li P J, Huang R, He J R, Wang Z G, Hao X, Liu J B, Zhang W L, Li Y R 2012 Acta Phys. Sin. 61 156103 (in Chinese)[黄乐旭, 陈远富, 李萍剑, 黄然, 贺加瑞, 王泽高, 郝昕, 刘竞博, 张万里, 李言荣 2012 物理学报 61 156103]

    [16]

    Li J, Wang L, Feng Z H, Yu C, Liu Q B, Dun S B, Cai S J 2012 Chin. Phys. B 21 097304

    [17]
    [18]
    [19]

    Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L, Ruoff R S 2009 Science 324 1312

    [20]

    Wang W R, Zhou Y X, Li T, Wang Y L, Xie X M 2012 Acta Phys. Sin. 61 038702 (in Chinese)[王文荣, 周玉修, 李铁, 王跃林, 谢晓明 2012 物理学报 61 038702]

    [21]
    [22]
    [23]

    Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim K S, Ahn J H, Kim P, Choi J Y, Hong B H 2009 Nature 457 706

    [24]
    [25]

    Gao L, Ren W, Xu H, Jin L, Wang Z, Ma T, Ma L P, Zhang Z, Fu Q, Peng L M, Bao X, Cheng H M 2012 Nat. Commun. 3 1

    [26]
    [27]

    Sutter P W, Flege J I, Sutter E A 2008 Nat. Mater. 7 406

    [28]

    Coraux J, NDiaye A T, Busse C, Michely T 2008 Nano Lett. 8 565

    [29]
    [30]
    [31]

    Li X, Magnuson C W, Venugopal A, Tromp R M, Hannon J B, Vogel E M, Colombo L, Ruoff R S 2011 J. Am. Chem. Soc. 133 2816

    [32]
    [33]

    Wang H, Wang G, Bao P, Yang S, Zhu W, Xie X, Zhang W J 2012 J. Am. Chem. Soc. 134 3627

    [34]

    Wu T, Ding G, Shen H, Wang H, Sun L, Jiang D, Xie X, Jiang M 2013 Adv. Funct. Mater. 23 198

    [35]
    [36]
    [37]

    Chen S, Ji H, Chou H, Li Q, Li H, Suk J W, Piner R, Liao L, Cai W, Ruoff R S 2013 Adv. Mater. 25 2062

    [38]
    [39]

    Ferrari A C, Meyer J C, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov K S, Roth S, Geim A K 2006 Phy. Rev. Lett. 97 187401

    [40]
    [41]

    Li Q, Chou H, Zhong J H, Liu J Y, Dolocan A, Zhang J, Zhou Y, Ruoff R S, Chen S S, Cai W W 2013 Nano Lett. 13 486

  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [2]
    [3]

    Liao L, Lin Y C, Bao M, Cheng R, Bai J, Liu Y, Qu Y, Wang K L, Huang Y, Duan X 2010 Nature 467 305

    [4]
    [5]

    Bae S, Kim H, Lee Y, Xu X, Park J S, Zheng Y, Balakrishnan J, Lei T, Kim H R, Song Y I, Kim Y J, Kim K S, Ozyilmaz B, Ahn J H, Hong B H, Iijima S 2010 Nat. Nanotechnol. 5 574

    [6]

    Qin M M, Ji W, Feng Y Y, Feng W 2014 Chin. Phys. B 23 028103

    [7]
    [8]
    [9]

    Stoller M D, Park S, Zhu Y, An J, Ruoff R S 2008 Nano Lett. 8 3498

    [10]
    [11]

    Ma L, Tan Z B, Tan C L, Liu G T, Yang C L, Lv L 2011 Acta Phys. Sin. 60 107302 (in Chinese)[马丽, 谭振兵, 谭长玲, 刘广同, 杨昌黎, 吕力 2011 物理学报 60 107302]

    [12]

    Park S, An J, Jung I, Piner R D, An S J, Li X, Velamakanni A, Ruoff R S 2009 Nano Lett. 9 1593

    [13]
    [14]
    [15]

    Huang L X, Chen Y F, Li P J, Huang R, He J R, Wang Z G, Hao X, Liu J B, Zhang W L, Li Y R 2012 Acta Phys. Sin. 61 156103 (in Chinese)[黄乐旭, 陈远富, 李萍剑, 黄然, 贺加瑞, 王泽高, 郝昕, 刘竞博, 张万里, 李言荣 2012 物理学报 61 156103]

    [16]

    Li J, Wang L, Feng Z H, Yu C, Liu Q B, Dun S B, Cai S J 2012 Chin. Phys. B 21 097304

    [17]
    [18]
    [19]

    Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L, Ruoff R S 2009 Science 324 1312

    [20]

    Wang W R, Zhou Y X, Li T, Wang Y L, Xie X M 2012 Acta Phys. Sin. 61 038702 (in Chinese)[王文荣, 周玉修, 李铁, 王跃林, 谢晓明 2012 物理学报 61 038702]

    [21]
    [22]
    [23]

    Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim K S, Ahn J H, Kim P, Choi J Y, Hong B H 2009 Nature 457 706

    [24]
    [25]

    Gao L, Ren W, Xu H, Jin L, Wang Z, Ma T, Ma L P, Zhang Z, Fu Q, Peng L M, Bao X, Cheng H M 2012 Nat. Commun. 3 1

    [26]
    [27]

    Sutter P W, Flege J I, Sutter E A 2008 Nat. Mater. 7 406

    [28]

    Coraux J, NDiaye A T, Busse C, Michely T 2008 Nano Lett. 8 565

    [29]
    [30]
    [31]

    Li X, Magnuson C W, Venugopal A, Tromp R M, Hannon J B, Vogel E M, Colombo L, Ruoff R S 2011 J. Am. Chem. Soc. 133 2816

    [32]
    [33]

    Wang H, Wang G, Bao P, Yang S, Zhu W, Xie X, Zhang W J 2012 J. Am. Chem. Soc. 134 3627

    [34]

    Wu T, Ding G, Shen H, Wang H, Sun L, Jiang D, Xie X, Jiang M 2013 Adv. Funct. Mater. 23 198

    [35]
    [36]
    [37]

    Chen S, Ji H, Chou H, Li Q, Li H, Suk J W, Piner R, Liao L, Cai W, Ruoff R S 2013 Adv. Mater. 25 2062

    [38]
    [39]

    Ferrari A C, Meyer J C, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov K S, Roth S, Geim A K 2006 Phy. Rev. Lett. 97 187401

    [40]
    [41]

    Li Q, Chou H, Zhong J H, Liu J Y, Dolocan A, Zhang J, Zhou Y, Ruoff R S, Chen S S, Cai W W 2013 Nano Lett. 13 486

  • [1] Zhang Xiao-Bo, Qing Fang-Zhu, Li Xue-Song. Clean transfer of chemical vapor deposition graphene film. Acta Physica Sinica, 2019, 68(9): 096801. doi: 10.7498/aps.68.20190279
    [2] Wang Bin, Feng Ya-Hui, Wang Qiu-Shi, Zhang Wei, Zhang Li-Na, Ma Jin-Wen, Zhang Hao-Ran, Yu Guang-Hui, Wang Gui-Qiang. Hydrogen etching of chemical vapor deposition-grown graphene domains. Acta Physica Sinica, 2016, 65(9): 098101. doi: 10.7498/aps.65.098101
    [3] Wang Wen-Rong, Zhou Yu-Xiu, Li Tie, Wang Yue-Lin, Xie Xiao-Ming. Research on synthesis of high-quality and large-scale graphene films by chemical vapor deposition. Acta Physica Sinica, 2012, 61(3): 038702. doi: 10.7498/aps.61.038702
    [4] Li Hao, Fu Zhi-Bing, Wang Hong-Bin, Yi Yong, Huang Wei, Zhang Ji-Cheng. Preperetions of bi-layer and multi-layer graphene on copper substrates by atmospheric pressure chemical vapor deposition and their mechanisms. Acta Physica Sinica, 2017, 66(5): 058101. doi: 10.7498/aps.66.058101
    [5] Yang Hui-Hui, Gao Feng, Dai Ming-Jin, Hu Ping-An. Research progress of direct synthesis of graphene on dielectric layer. Acta Physica Sinica, 2017, 66(21): 216804. doi: 10.7498/aps.66.216804
    [6] Han Lin-Zhi, Zhao Zhan-Xia, Ma Zhong-Quan. Process parameters of large single crystal graphene prepared by chemical vapor deposition. Acta Physica Sinica, 2014, 63(24): 248103. doi: 10.7498/aps.63.248103
    [7] Wang Bo, Fang Yu-Long, Yin Jia-Yun, Liu Qing-Bin, Zhang Zhi-Rong, Guo Yan-Min, Li Jia, Lu Wei-Li, Feng Zhi-Hong. Effect of surface pretreatment on GaN van der Waals epitaxy growth on graphene. Acta Physica Sinica, 2017, 66(24): 248101. doi: 10.7498/aps.66.248101
    [8] Zhang Zhong-Qiang, Jia Yu-Xia, Guo Xin-Feng, Ge Dao-Han, Cheng Guang-Gui, Ding Jian-Ning. Characteristics of interaction between single-layer graphene on copper substrate and groove. Acta Physica Sinica, 2018, 67(3): 033101. doi: 10.7498/aps.67.20172249
    [9] Gu Ji-Wei, Wang Jin-Cheng, Wang Zhi-Jun, Li Jun-Jie, Guo Can, Tang Sai. Phase-field crystal modelling the nucleation processes of graphene structures on different substrates. Acta Physica Sinica, 2017, 66(21): 216101. doi: 10.7498/aps.66.216101
    [10] Hao Zhi-Biao, Li He-Jun, Yan Gui-Shen. . Acta Physica Sinica, 2002, 51(2): 326-331. doi: 10.7498/aps.51.326
    [11] Guo Ping-Sheng, Chen Ting, Cao Zhang-Yi, Zhang Zhe-Juan, Chen Yi-Wei, Sun Zhuo. Low temperature growth of carbon nanotubes by chemical vapor deposition for field emission cathodes. Acta Physica Sinica, 2007, 56(11): 6705-6711. doi: 10.7498/aps.56.6705
    [12] Feng Qiu-Ju, Xu Rui-Zhuo, Guo Hui-Ying, Xu Kun, Li Rong, Tao Peng-Cheng, Liang Hong-Wei, Liu Jia-Yuan, Mei Yi-Ying. Influences of the substrate position on the morphology and characterization of phosphorus doped ZnO nanomaterial. Acta Physica Sinica, 2014, 63(16): 168101. doi: 10.7498/aps.63.168101
    [13] Dong Yan-Fang, He Da-Wei, Wang Yong-Sheng, Xu Hai-Teng, Gong Zhe. Synthesis of large size monolayer MoS2 with a simple chemical vapor deposition. Acta Physica Sinica, 2016, 65(12): 128101. doi: 10.7498/aps.65.128101
    [14] Han Dao-Li, Zhao Yuan-Li, Zhao Hai-Bo, Song Tian-Fu, Liang Er-Jun. Growth of well-aligned carbon nanotubes arrays by chemical vapor deposition. Acta Physica Sinica, 2007, 56(10): 5958-5964. doi: 10.7498/aps.56.5958
    [15] WANG JIAN-XIONG, PENG JING-CUI, CHEN XIAO-HUA, DENG FU-MING, WU GUO-TAO, YANG HANG-SHENG, WANG MIAO, LU XIAO-NAN, LI WEN-ZHU. GROWING CARBON BUCKONIONS BY RADIO FREQUENCY PLASMA-ENHANCED CHEMICAL VAPOR DEPOSITION. Acta Physica Sinica, 2001, 50(7): 1264-1267. doi: 10.7498/aps.50.1264
    [16] Yan Xiao-Qin, Liu Zu-Qin, Tang Dong-Sheng, Ci Li-Jie, Liu Dong-Fang, Zhou Zhen-Ping, Liang Ying-Xin, Yuan Hua-Jun, Zhou Wei-Ya, Wang Gang. Effects of substrates on silicon oxide nanowires growth by thermal chemical vapor deposition. Acta Physica Sinica, 2003, 52(2): 454-458. doi: 10.7498/aps.52.454
    [17] Yu Wei, Liu Li-Hui, Hou Hai-Hong, Ding Xue-Cheng, Han Li, Fu Guang-Sheng. Silicon nitride films prepared by helicon wave plasam-enhanced chemical vapour deposition. Acta Physica Sinica, 2003, 52(3): 687-691. doi: 10.7498/aps.52.687
    [18] Feng Qiu-Ju, Li Fang, Li Tong-Tong, Li Yun-Zheng, Shi Bo, Li Meng-Ke, Liang Hong-Wei. Growth and characterization of grid-like β-Ga2O3 nanowires by electric field assisted chemical vapor deposition method. Acta Physica Sinica, 2018, 67(21): 218101. doi: 10.7498/aps.67.20180805
    [19] Vertical growth of conical carbon cone with carbon nanotube core on graphite substrate. Acta Physica Sinica, 2007, 56(12): 7165-7169. doi: 10.7498/aps.56.7165
    [20] Zeng Xiang-Bo, Wang Bo, Dai Song-Tao, Liao Xian-Bo, Diao Hong-Wei, Xiang Xian-Bi, Chang Xiu-Lan, Xu Yan-Yue, Hu Zhi-Hua, Hao Hui-Ying, Kong Guang-Lin. Boron-doped silicon nanowires grown by plasmaenhanced chemical vapor deposition . Acta Physica Sinica, 2004, 53(12): 4410-4413. doi: 10.7498/aps.53.4410
  • Citation:
Metrics
  • Abstract views:  852
  • PDF Downloads:  701
  • Cited By: 0
Publishing process
  • Received Date:  15 March 2014
  • Accepted Date:  29 April 2014
  • Published Online:  05 September 2014

The pre-treatment of copper for graphene synthesis

  • 1. Key Laboratory of Advanced Display and System Applications (Shanghai University), Ministry of Education, Shanghai 200072, China;
  • 2. School of Materials Science and Engineering, Shanghai University, Shanghai 200072, China
Fund Project:  Project supported by the National Basic Research Program of China (Grant No. 2011CB013100), and the National Key Technology Research and Development Program of the Ministry of Science and Technology of China (Grant No. 2011BAE01B14).

Abstract: Graphene synthesis by chemical-vapor-deposition (CVD) has attracted great interest. As the substrates for graphene growth, copper has become a common choice because its capacity could produce high-quality and uniform monolayer graphene. Morphology and surface conditions of the copper foil have great influence on the quality of the graphene grown on it. Here we report a rapid and effective copper pre-treatment method to improve the quality of graphene. After a pre-etching in 1 mol/L Fe(NO3)3 aqueous solutions for 90 s, the quality of the copper foil surface has been improved. Compared with the HCl treatment and electro-chemical polishing, Fe(NO3)3 pre-etching can generate a better result and has been verified to have general applicability for different types of copper foils.

Reference (41)

Catalog

    /

    返回文章
    返回