Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Characteristics of charge transport in nano-sized TiO2 particles/submicron spheres multilayer thin-film electrode

Jiang Ling Zhang Chang-Neng Ding Yong Mo Li-E Huang Yang Hu Lin-Hua Dai Song-Yuan

Characteristics of charge transport in nano-sized TiO2 particles/submicron spheres multilayer thin-film electrode

Jiang Ling, Zhang Chang-Neng, Ding Yong, Mo Li-E, Huang Yang, Hu Lin-Hua, Dai Song-Yuan
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In this work, we design the nano-sized TiO2 particles/submicron spheres multilayer structured photoanode, based on the fact of stronger light scattering properties of TiO2 submicron spheres. Effect of TiO2 submicron-spheres on the charge transport and interfacial properties in multilayer thin-film electrodes are investigated in detail using intensity-modulated photocurrent spectroscopy (IMPS), electrochemical impedance spectroscopy (EIS) and incident photon-to-current conversion efficiency (IPCE). Results obtained from IMPS for dye-sensitized solar cells (DSCs) indicate that submicron-spheres have fewer defects, but the poor contact at the interfaces between submicron spheres hinders the electron transport and makes the transit time longer. EIS results show that there are no obvious differences in interface recombination between the designed electrodes. It is interesting to find that the bottom section of the photoanode composed of nano-sized TiO2 thin film has a higher light utilization efficiency than that composed of submicron-spheres; meanwhile, the Fermi level of TiO2 and the photovoltaic properties of DSCs have been extended. Our results may provide an experiment basis for structure design of high-efficiency DSC photoanode.
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2011CBA00700), the National High Technology Research and Development Program of China (Grant No. 2011AA050527), and the National Natural Science Foundation of China (Grant Nos. 61204075, 21173227, 21173228).
    [1]

    Mathew S, Yella A, Gao P, Humphry-Baker R, Curchod B F E, Ashari-Astani N, Tavernelli I, Rothlisberger U, Nazeeruddin M K, Grätzel M 2014 Nat. Chem. 6 242

    [2]

    Kou D X, Liu W Q, Hu L H, Huang Y, Dai S Y, Jiang N Q 2010 Acta Phys. Sin. 59 5857 (in Chinese) [寇东星, 刘伟庆, 胡林华, 黄阳, 戴松元, 姜年权 2010 物理学报 59 5857]

    [3]

    Li J, Kong F T, Zhang C N, Liu W Q, Dai S Y 2010 Acta Chim. Sin. 68 1357

    [4]

    Huang X W, Deng J Y, Xu L, Shen P, Zhao B, Tan S T 2012 Acta Chim. Sin. 70 1604

    [5]

    Dai S Y, Wang K J 2003 Chin.Phys.Lett. 20 953

    [6]

    Hu L H, Dai S Y, Wang K J 2005 Chin.Phys.Lett. 22 493

    [7]

    Xu S Y, Hu L H, Li W X, Dai S Y 2011 Acta Phys. Sin. 60 116802 (in Chinese) [许双英, 胡林华, 李文欣, 戴松元 2011 物理学报 60 116802]

    [8]

    Liu W Q, Kou D X, Hu L H, Dai S Y 2012 Acta Phys. Sin. 61 168201 (in Chinese) [刘伟庆, 寇东星, 胡林华, 戴松元 2012 物理学报 61 168201]

    [9]

    Xiong B T, Zhou B X, Bai J, Zheng Q, Liu Y B, Cai W M, Cai J 2008 Chin. Phys. B 17 3713

    [10]

    Lin Y, Xiao X R, Zhang D S, Xie P H, Zhang B W 2002 Chin. Sci. Bull. 47 1145 (in Chinese) [林原, 肖绪瑞, 张东社, 谢普会, 张宝文 2002 科学通报 47 1145]

    [11]

    Wang Z S, Kawauchi H, Kashima T, Arakawa H 2004 Coordin. Chem. Rev. 248 1381

    [12]

    Wang P, Dai Q, Zakeeruddin S M, Forsyth M, MacFarlane D R, Grätzel M 2004 J. Am. Chem. Soc. 126 13590

    [13]

    Barbé C J, Arendse F, Comte P, Jirousek M, Lenzmann F, Shklover V, Grätzel M 1997 J. Am. Ceram. Soc. 80 3157

    [14]

    Huang F, Chen D, Zhang X L, Caruso R A, Cheng Y B 2010 Adv. Funct. Mater. 20 1301

    [15]

    Yang L, Lin Y, Jia J G, Xiao X R, Li X P, Zhou X W 2008 J. Power Sources 182 370

    [16]

    Wang M, Chen P, Humphry-Baker R, Zakeeruddin S M, Grätzel M 2009 ChemPhysChem 10 290

    [17]

    Wang Q, Zhang Z, Zakeeruddin S M, Grätzel M 2008 J. Phys. Chem. C 112 7084

    [18]

    Li Y, Liu J, Jia Z 2006 Mater. Lett. 60 1753

    [19]

    Sheng J, Hu L H, Li W X, Mo L E, Tian H J, Dai S Y 2011 Sol. Energy 85 2697

    [20]

    Lawandy N W, Balachandran R M, Gomes A S L, Sauvain E 1994 Nature 368 436

    [21]

    Ferber J, Luther J 1998 Sol. Energy Mater. Sol. Cells 54 265

    [22]

    Bisquert J, Vikhrenko V S 2004 J. Phys. Chem. B 108 2313

    [23]

    Lagemaat J, Frank A J 2001 J. Phys. Chem. B 105 11194

    [24]

    Nelson J 1999 Phys. Rev. B 59 15374

    [25]

    Peter L M, Wijayantha K G U 2000 Electrochimi. Acta 45 4543

    [26]

    Nazeeruddin M K, Kay A, Rodicio I, Humpbry-Baker R, Mller E, Liska P, Vlachopoulos N, Grätzel M 1993 J.Am.Chem.Soc. 115 6382

    [27]

    Liu W Q, Kou D X, Cai M L, Hu L H, Dai S Y 2012 Prog. Chem. 24 722 (in Chinese) [刘伟庆, 寇东星, 蔡墨朗, 胡林华, 戴松元 2012 化学进展 24 722]

  • [1]

    Mathew S, Yella A, Gao P, Humphry-Baker R, Curchod B F E, Ashari-Astani N, Tavernelli I, Rothlisberger U, Nazeeruddin M K, Grätzel M 2014 Nat. Chem. 6 242

    [2]

    Kou D X, Liu W Q, Hu L H, Huang Y, Dai S Y, Jiang N Q 2010 Acta Phys. Sin. 59 5857 (in Chinese) [寇东星, 刘伟庆, 胡林华, 黄阳, 戴松元, 姜年权 2010 物理学报 59 5857]

    [3]

    Li J, Kong F T, Zhang C N, Liu W Q, Dai S Y 2010 Acta Chim. Sin. 68 1357

    [4]

    Huang X W, Deng J Y, Xu L, Shen P, Zhao B, Tan S T 2012 Acta Chim. Sin. 70 1604

    [5]

    Dai S Y, Wang K J 2003 Chin.Phys.Lett. 20 953

    [6]

    Hu L H, Dai S Y, Wang K J 2005 Chin.Phys.Lett. 22 493

    [7]

    Xu S Y, Hu L H, Li W X, Dai S Y 2011 Acta Phys. Sin. 60 116802 (in Chinese) [许双英, 胡林华, 李文欣, 戴松元 2011 物理学报 60 116802]

    [8]

    Liu W Q, Kou D X, Hu L H, Dai S Y 2012 Acta Phys. Sin. 61 168201 (in Chinese) [刘伟庆, 寇东星, 胡林华, 戴松元 2012 物理学报 61 168201]

    [9]

    Xiong B T, Zhou B X, Bai J, Zheng Q, Liu Y B, Cai W M, Cai J 2008 Chin. Phys. B 17 3713

    [10]

    Lin Y, Xiao X R, Zhang D S, Xie P H, Zhang B W 2002 Chin. Sci. Bull. 47 1145 (in Chinese) [林原, 肖绪瑞, 张东社, 谢普会, 张宝文 2002 科学通报 47 1145]

    [11]

    Wang Z S, Kawauchi H, Kashima T, Arakawa H 2004 Coordin. Chem. Rev. 248 1381

    [12]

    Wang P, Dai Q, Zakeeruddin S M, Forsyth M, MacFarlane D R, Grätzel M 2004 J. Am. Chem. Soc. 126 13590

    [13]

    Barbé C J, Arendse F, Comte P, Jirousek M, Lenzmann F, Shklover V, Grätzel M 1997 J. Am. Ceram. Soc. 80 3157

    [14]

    Huang F, Chen D, Zhang X L, Caruso R A, Cheng Y B 2010 Adv. Funct. Mater. 20 1301

    [15]

    Yang L, Lin Y, Jia J G, Xiao X R, Li X P, Zhou X W 2008 J. Power Sources 182 370

    [16]

    Wang M, Chen P, Humphry-Baker R, Zakeeruddin S M, Grätzel M 2009 ChemPhysChem 10 290

    [17]

    Wang Q, Zhang Z, Zakeeruddin S M, Grätzel M 2008 J. Phys. Chem. C 112 7084

    [18]

    Li Y, Liu J, Jia Z 2006 Mater. Lett. 60 1753

    [19]

    Sheng J, Hu L H, Li W X, Mo L E, Tian H J, Dai S Y 2011 Sol. Energy 85 2697

    [20]

    Lawandy N W, Balachandran R M, Gomes A S L, Sauvain E 1994 Nature 368 436

    [21]

    Ferber J, Luther J 1998 Sol. Energy Mater. Sol. Cells 54 265

    [22]

    Bisquert J, Vikhrenko V S 2004 J. Phys. Chem. B 108 2313

    [23]

    Lagemaat J, Frank A J 2001 J. Phys. Chem. B 105 11194

    [24]

    Nelson J 1999 Phys. Rev. B 59 15374

    [25]

    Peter L M, Wijayantha K G U 2000 Electrochimi. Acta 45 4543

    [26]

    Nazeeruddin M K, Kay A, Rodicio I, Humpbry-Baker R, Mller E, Liska P, Vlachopoulos N, Grätzel M 1993 J.Am.Chem.Soc. 115 6382

    [27]

    Liu W Q, Kou D X, Cai M L, Hu L H, Dai S Y 2012 Prog. Chem. 24 722 (in Chinese) [刘伟庆, 寇东星, 蔡墨朗, 胡林华, 戴松元 2012 化学进展 24 722]

  • [1] Liu Wei-Qing, Kou Dong-Xing, Hu Lin-Hua, Dai Song-Yuan. Effect of light path folding on the properties of electron transport in dyesensitized solar cell. Acta Physica Sinica, 2012, 61(16): 168201. doi: 10.7498/aps.61.168201
    [2] Xu Wei-Wei, Dai Song-Yuan, Fang Xia-Qin, Hu Lin-Hua, Kong Fan-Tai, Pan Xu, Wang Kong-Jia. Optimization of photoelectrode introduced to dye-sensitized solar cells by anodic oxidative hydrolysis. Acta Physica Sinica, 2005, 54(12): 5943-5948. doi: 10.7498/aps.54.5943
    [3] Zeng Long-Yue, Dai Song-Yuan, Wang Kong-Jia, Kong Fan-Tai, Hu Lin-Hua, Pan Xu, Shi Cheng-Wu. The mechanism of dye-sensitized solar cell based on nanocrystalline ZnO films. Acta Physica Sinica, 2005, 54(1): 53-57. doi: 10.7498/aps.54.53
    [4] Dai Song-Yuan, Kong Fan-Tai, Hu Lin-Hua, Shi Cheng-Wu, Fang Xia-Qin, Pan Xu, Wang Kong-Jia. Investigation on the dye-sensitized solar cell. Acta Physica Sinica, 2005, 54(4): 1919-1926. doi: 10.7498/aps.54.1919
    [5] Weng Jian, Xiao Shang-Feng, Chen Shuang-Hong, Dai Song-Yuan. Research on the dye-sensitized solar cell module. Acta Physica Sinica, 2007, 56(6): 3602-3606. doi: 10.7498/aps.56.3602
    [6] Kou Dong-Xing, Jiang Nian-Quan, Huang Yang, Dai Song-Yuan, Chen Shuang-Hong, Hu Lin-Hua, Kong Fan-Tai. Model for series resistance photovoltaic performance of large-scale dye-sensitized solar cells. Acta Physica Sinica, 2010, 59(1): 643-648. doi: 10.7498/aps.59.643
    [7] Kou Dong-Xing, Jiang Nian-Quan, Liu Wei-Qing, Hu Lin-Hua, Huang Yang, Dai Song-Yuan. The investigation on the mechanism of enhanced performance of dye-sensitized solar cells after anode modified. Acta Physica Sinica, 2010, 59(8): 5857-5862. doi: 10.7498/aps.59.5857
    [8] Chen Shuang-Hong, Weng Jian, Wang Li-Jun, Zhang Chang-Neng, Huang Yang, Jiang Nian-Quan, Dai Song-Yuan. The study of interface and photoelectric performance of dye-sensitized solar cells in the applied negative bias. Acta Physica Sinica, 2011, 60(12): 128404. doi: 10.7498/aps.60.128404
    [9] Liang Lin-Yun, Dai Song-Yuan, Fang Xia-Qin, Hu Lin-Hua. Research on the electron transport and back-reaction kinetics in TiO2 films applied in dye-sensitized solar cells. Acta Physica Sinica, 2008, 57(3): 1956-1962. doi: 10.7498/aps.57.1956
    [10] Wu Bao-Shan, Wang Lin-Lin, Wang Yong-Mei, Ma Ting-Li. Study of influencing factors for performance of large-scale dye-sensitized solar cells based on the semi-empirical model. Acta Physica Sinica, 2012, 61(7): 078801. doi: 10.7498/aps.61.078801
    [11] Liang Lin-Yun, Dai Song-Yuan, Hu Lin-Hua, Dai Jun, Liu Wei-Qing. Effect of TiO2 particle size on the properties of electron transport and back-reaction in dye-sensitized solar cells. Acta Physica Sinica, 2009, 58(2): 1338-1343. doi: 10.7498/aps.58.1338
    [12] Xi Xiao-Wang, Hu Lin-Hua, Xu Wei-Wei, Dai Song-Yuan. Influence of TiCl4 nanoporous TiO2 films on the performance of dye-sensitized solar cells. Acta Physica Sinica, 2011, 60(11): 118203. doi: 10.7498/aps.60.118203
    [13] Zeng Xiang-An, Ai Bin, Deng You-Jun, Shen Hui. Study on light-induced degradation of silicon wafers and solar cells. Acta Physica Sinica, 2014, 63(2): 028803. doi: 10.7498/aps.63.028803
    [14] Liu Chang-Wen, Zhou Xun, Yue Wen-Jin, Wang Ming-Tai, Qiu Ze-Liang, Meng Wei-Li, Chen Jun-Wei, Qi Juan-Juan, Dong Chao. Hybrid polymer-based solar cells with metal oxides as the main electron acceptor and transporter. Acta Physica Sinica, 2015, 64(3): 038804. doi: 10.7498/aps.64.038804
    [15] Dai Jun, Hu Lin-Hua, Liu Wei-Qing, Dai Song-Yuan. Study on the flatband potential of nanoporous TiO2 film electrode. Acta Physica Sinica, 2008, 57(8): 5310-5315. doi: 10.7498/aps.57.5310
    [16] Yao Xin, Ding Yan-Li, Zhang Xiao-Dan, Zhao Ying. A review of the perovskite solar cells. Acta Physica Sinica, 2015, 64(3): 038805. doi: 10.7498/aps.64.038805
    [17] Wang Lin-Shen, Zhao Jing-Fang, Sui Yan-Ping, Zhang De-Xian, Cai Hong-Kun, Tao Ke. Interface treatment of amorphous silicon thin film solar cells on flexible substrate. Acta Physica Sinica, 2009, 58(11): 7921-7925. doi: 10.7498/aps.58.7921
    [18] Zhou Xiao-Ming, Deng Jun-Yu, Yu Huang-Zhong. Annealing treatment effects on the performances of solar cells based on different solvent blend systems. Acta Physica Sinica, 2011, 60(7): 077206. doi: 10.7498/aps.60.077206
    [19] Fang Xin, Shen Wen-Zhong. Oxygen and carbon behaviors in multi-crystalline silicon and their effect on solar cell conversion efficiency. Acta Physica Sinica, 2011, 60(8): 088801. doi: 10.7498/aps.60.088801
    [20] Cao Yu, Zhang Jian-Jun, Li Tian-Wei, Huang Zhen-Hua, Ma Jun, Ni Jian, Geng Xin-Hua, Zhao Ying. Optimization of the longitudinal structure of intrinsic layer in microcrystalline silicon germanium solar cell. Acta Physica Sinica, 2013, 62(3): 036102. doi: 10.7498/aps.62.036102
  • Citation:
Metrics
  • Abstract views:  772
  • PDF Downloads:  735
  • Cited By: 0
Publishing process
  • Received Date:  20 June 2014
  • Accepted Date:  01 September 2014
  • Published Online:  05 January 2015

Characteristics of charge transport in nano-sized TiO2 particles/submicron spheres multilayer thin-film electrode

  • 1. Key Laboratory of Novel Thin Film Solar Cells, Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, China;
  • 2. State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China
Fund Project:  Project supported by the National Basic Research Program of China (Grant No. 2011CBA00700), the National High Technology Research and Development Program of China (Grant No. 2011AA050527), and the National Natural Science Foundation of China (Grant Nos. 61204075, 21173227, 21173228).

Abstract: In this work, we design the nano-sized TiO2 particles/submicron spheres multilayer structured photoanode, based on the fact of stronger light scattering properties of TiO2 submicron spheres. Effect of TiO2 submicron-spheres on the charge transport and interfacial properties in multilayer thin-film electrodes are investigated in detail using intensity-modulated photocurrent spectroscopy (IMPS), electrochemical impedance spectroscopy (EIS) and incident photon-to-current conversion efficiency (IPCE). Results obtained from IMPS for dye-sensitized solar cells (DSCs) indicate that submicron-spheres have fewer defects, but the poor contact at the interfaces between submicron spheres hinders the electron transport and makes the transit time longer. EIS results show that there are no obvious differences in interface recombination between the designed electrodes. It is interesting to find that the bottom section of the photoanode composed of nano-sized TiO2 thin film has a higher light utilization efficiency than that composed of submicron-spheres; meanwhile, the Fermi level of TiO2 and the photovoltaic properties of DSCs have been extended. Our results may provide an experiment basis for structure design of high-efficiency DSC photoanode.

Reference (27)

Catalog

    /

    返回文章
    返回