Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effect of inserted AlN layer on the two-dimensional electron gas in AlxGa1-xN/AlN/GaN

Yang Peng Lü Yan-Wu Wang Xin-Bo

Effect of inserted AlN layer on the two-dimensional electron gas in AlxGa1-xN/AlN/GaN

Yang Peng, Lü Yan-Wu, Wang Xin-Bo
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • This paper investigates the changes of electron transport properties in AlxGa1-xN/GaN with an inserted AlN layer. The polarization charge density and two-dimensional electron gas (2DEG) sheet density in AlxGa1-xN/AlN/GaN double heterojunction high electron mobility transistors (HEMT) affected by the spontaneous polarization and piezoelectric polarization in AlxGa1-xN and AlN barrier are studied. Relations of interface roughness scattering and alloy disorder scattering with the AlN thickness are systematically analyzed. It is found that the alloy disorder scattering is the main scattering mechanism in AlxGa1-xN/GaN heterojunction high-electron-mobility transistors, while the interface roughness scattering is the main scattering mechanism in AlxGa1-xN/AlN/GaN double-heterojunction structure. It is also known that the 2DEG sheet density, interface roughness scattering and alloy disorder scattering are depended on the thickness of the inserted AlN layer. The 2DEG sheet density increases slightly and the mobility increases obviously by inserting an AlN layer about 13 nm. Taking Al mole fraction of 0.3 as an example, if without AlN layer, the 2DEG sheet density is 1.47 1013 cm-2 with the mobility limited by the interface roughness scattering of 1.15 104 cm2V-1-1, and the mobility limited by alloy disorder scattering of 6.07 102cm2V-1-1. After inserting an AlN layer of 1 nm, the 2DEG sheet density increases to 1.66 1013cm-2, and the mobility limited by the interface roughness scattering reduces to 7.88 103cm2V-1-1 while the mobility limited by alloy disorder scattering increases greatly up to 1.42 108 cm2V-1-1.
      Corresponding author: Lü Yan-Wu, ywlu@bjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 60976070).
    [1]

    zgr A, Kim W, Fan Z, Botchkarev A, Salvador A, Mohammed S N, Sverdlov B, Morkoc H 1995 Electron. Lett. 31 1389

    [2]

    Khan M A, Chen Q, Shur M S, Dermott B T, Higgins J A, Burm J, Schaff W, Eastman L F 1996 IEEE Electron Device Lett. 17 584

    [3]

    Binari S C, Redwing J M, Kelner G, Kruppa W 1997 Electron. Lett. 33 242

    [4]

    Ando T, Fowler A B, Stern F 1982 Rev. Mod. Phys. 54 437

    [5]

    Cao Y, Xing H, Jena D 2010 Appl. Phys. Lett. 97 222116

    [6]

    Masselink T, W 1991 Phys. Rev. Lett. 66 1513

    [7]

    Hsu L, Walukiewicz W 1997 Phys. Rev. B 56 1520

    [8]

    Wu M, Zheng D Y, Wang Y, Chen W W, Zhang K, Ma X H, Zhang J C, Hao Y 2014 Chin. Phys. B 23 097307

    [9]

    Tang C, Xie G, Zhang L, Guo Q, Wang T, Sheng K 2013 Chin. Phys. B 22 0106107

    [10]

    Ji D, Liu B, L Y W, Zou M, Fan B L 2012 Chin. Phys. B 21 067201

    [11]

    Duan B X, Yang Y T 2014 Acta Phys. Sin. 63 057302(in Chinese) [段宝兴, 杨银堂 2014 物理学报 63 057302]

    [12]

    Zhu Y X, Cao W W, Xu C, Deng Y, Zou D S 2014 Acta Phys. Sin. 63 117302(in Chinese) [朱彦旭, 曹伟伟, 徐晨, 邓叶, 邹德恕 2014 物理学报 63 117302]

    [13]

    Yan J D, Wang X L, Wang Q, Qu S, Xiao H L, Peng E C, Kang H, Wang C M, Feng C, Yin H B, Jiang L J, Li B Q, Wang Z G, Hou X 2014 J. Appl. Phys. 116 054502

    [14]

    Smorchkova I P, Chen L, Mates T, Shen L, Heikman S, Moran B, Keller S, DenBaars S P, Speck J S, Mishra U K 2001 J. Appl. Phys. 90 5196

    [15]

    Kim T W, Choo D C, Yoo K H, Jung M H, Cho Y H, Jae-Lee H, Jung-Lee H 2005 J. Appl. Phys. 97 103721

    [16]

    Zhou Z T, Guo L W, Xing Z G, Ding G J, Tan C L, L L, Liu J, Liu X Y, Jia H Q, Chen H, Zhou J M 2007 Acta Phys. Sin. 56 6013(in Chinese) [周忠堂, 郭丽伟, 邢志刚, 丁国建, 谭长林, 吕力, 刘建, 刘新宇, 贾海强, 陈弘, 周均铭 2007 物理学报 56 6013]

    [17]

    Makoto Miyoshi, Takashi Egawa, Hiroyasu Ishikawa, Kei-Ichiro Asai, Tomohiko Shibata, Mitsuhiro Tanaka, Osamu Oda 2005 J. Appl. Phys. 98 063713

    [18]

    Yu Y X, Lin Z J, Luan C B, L Y J, Feng Z H, Yang M, Wang Y, Chen H 2013 AIP Adv. 3 092115

    [19]

    Luan C B, Lin Z J, L Y J, Zhao J T, Wang Y, Chen H, Wang Z G 2014 J. Appl. Phys. 116 044507

    [20]

    Hu W D, Chen X S, Yin F, Zhang J B, Luc W 2009 J. Appl. Phys. 105 084502

    [21]

    Ambacher O, Smart J, Shealy J R, Weimann N G, Chu K, Murphy M, Schaff W J, Eastman L F, Dimitrov R, Wittmer L, Stutzmann M, Rieger W, Hilsenbeck J 1999 J. Appl. Phys. 85 3222

    [22]

    Wang X D, Hu W D, Chen X S, Lu W 2012 IEEE Trans. Electron Devices 59 1393

    [23]

    Zhang Y M, Feng S W, Zhu H, Zhang G C, Deng B, Ma L 2013 J. Appl. Phys. 114 094516

    [24]

    Zhang Y M, Feng S W, Zhu H, Zhang J, Deng B 2013 Microelectron. Reliab. 53 694

    [25]

    Nitin Goyal, Benjamin Iiguez, Tor A. Fjeldly 2012 Appl. Phys. Lett. 101 103505

    [26]

    Ferry D K, Goodnick S M, Bird J 2009 Transport in Nanostructures (2nd Ed.) (Cambridge: Cambridge University Press) p95

    [27]

    Liu B, Lu Y W, Jin G R, Zhao Y, Wang X L, Zhu Q S, Wang Z G 2010 Appl. Phys. Lett. 97 262111

    [28]

    Enrico Bellotti, Francesco Bertazzi, Michele Goano 2007 J. Appl. Phys. 101 123706

  • [1]

    zgr A, Kim W, Fan Z, Botchkarev A, Salvador A, Mohammed S N, Sverdlov B, Morkoc H 1995 Electron. Lett. 31 1389

    [2]

    Khan M A, Chen Q, Shur M S, Dermott B T, Higgins J A, Burm J, Schaff W, Eastman L F 1996 IEEE Electron Device Lett. 17 584

    [3]

    Binari S C, Redwing J M, Kelner G, Kruppa W 1997 Electron. Lett. 33 242

    [4]

    Ando T, Fowler A B, Stern F 1982 Rev. Mod. Phys. 54 437

    [5]

    Cao Y, Xing H, Jena D 2010 Appl. Phys. Lett. 97 222116

    [6]

    Masselink T, W 1991 Phys. Rev. Lett. 66 1513

    [7]

    Hsu L, Walukiewicz W 1997 Phys. Rev. B 56 1520

    [8]

    Wu M, Zheng D Y, Wang Y, Chen W W, Zhang K, Ma X H, Zhang J C, Hao Y 2014 Chin. Phys. B 23 097307

    [9]

    Tang C, Xie G, Zhang L, Guo Q, Wang T, Sheng K 2013 Chin. Phys. B 22 0106107

    [10]

    Ji D, Liu B, L Y W, Zou M, Fan B L 2012 Chin. Phys. B 21 067201

    [11]

    Duan B X, Yang Y T 2014 Acta Phys. Sin. 63 057302(in Chinese) [段宝兴, 杨银堂 2014 物理学报 63 057302]

    [12]

    Zhu Y X, Cao W W, Xu C, Deng Y, Zou D S 2014 Acta Phys. Sin. 63 117302(in Chinese) [朱彦旭, 曹伟伟, 徐晨, 邓叶, 邹德恕 2014 物理学报 63 117302]

    [13]

    Yan J D, Wang X L, Wang Q, Qu S, Xiao H L, Peng E C, Kang H, Wang C M, Feng C, Yin H B, Jiang L J, Li B Q, Wang Z G, Hou X 2014 J. Appl. Phys. 116 054502

    [14]

    Smorchkova I P, Chen L, Mates T, Shen L, Heikman S, Moran B, Keller S, DenBaars S P, Speck J S, Mishra U K 2001 J. Appl. Phys. 90 5196

    [15]

    Kim T W, Choo D C, Yoo K H, Jung M H, Cho Y H, Jae-Lee H, Jung-Lee H 2005 J. Appl. Phys. 97 103721

    [16]

    Zhou Z T, Guo L W, Xing Z G, Ding G J, Tan C L, L L, Liu J, Liu X Y, Jia H Q, Chen H, Zhou J M 2007 Acta Phys. Sin. 56 6013(in Chinese) [周忠堂, 郭丽伟, 邢志刚, 丁国建, 谭长林, 吕力, 刘建, 刘新宇, 贾海强, 陈弘, 周均铭 2007 物理学报 56 6013]

    [17]

    Makoto Miyoshi, Takashi Egawa, Hiroyasu Ishikawa, Kei-Ichiro Asai, Tomohiko Shibata, Mitsuhiro Tanaka, Osamu Oda 2005 J. Appl. Phys. 98 063713

    [18]

    Yu Y X, Lin Z J, Luan C B, L Y J, Feng Z H, Yang M, Wang Y, Chen H 2013 AIP Adv. 3 092115

    [19]

    Luan C B, Lin Z J, L Y J, Zhao J T, Wang Y, Chen H, Wang Z G 2014 J. Appl. Phys. 116 044507

    [20]

    Hu W D, Chen X S, Yin F, Zhang J B, Luc W 2009 J. Appl. Phys. 105 084502

    [21]

    Ambacher O, Smart J, Shealy J R, Weimann N G, Chu K, Murphy M, Schaff W J, Eastman L F, Dimitrov R, Wittmer L, Stutzmann M, Rieger W, Hilsenbeck J 1999 J. Appl. Phys. 85 3222

    [22]

    Wang X D, Hu W D, Chen X S, Lu W 2012 IEEE Trans. Electron Devices 59 1393

    [23]

    Zhang Y M, Feng S W, Zhu H, Zhang G C, Deng B, Ma L 2013 J. Appl. Phys. 114 094516

    [24]

    Zhang Y M, Feng S W, Zhu H, Zhang J, Deng B 2013 Microelectron. Reliab. 53 694

    [25]

    Nitin Goyal, Benjamin Iiguez, Tor A. Fjeldly 2012 Appl. Phys. Lett. 101 103505

    [26]

    Ferry D K, Goodnick S M, Bird J 2009 Transport in Nanostructures (2nd Ed.) (Cambridge: Cambridge University Press) p95

    [27]

    Liu B, Lu Y W, Jin G R, Zhao Y, Wang X L, Zhu Q S, Wang Z G 2010 Appl. Phys. Lett. 97 262111

    [28]

    Enrico Bellotti, Francesco Bertazzi, Michele Goano 2007 J. Appl. Phys. 101 123706

  • [1] Bai Min, Xuan Rong-Xi, Song Jian-Jun, Zhang He-Ming, Hu Hui-Yong, Shu Bin. Hole scattering and mobility in compressively strained Ge/(001)Si1-xGex. Acta Physica Sinica, 2015, 64(3): 038501. doi: 10.7498/aps.64.038501
    [2] Chen Qian,  Li Qun,  Yang Ying. Effects of AlGaN interlayer on scattering mechanisms in InAlN/AlGaN/GaN heterostructures. Acta Physica Sinica, 2019, 68(1): 017301. doi: 10.7498/aps.68.20181663
    [3] G.Li, S.J.Chua, LI ZHI-FENG, LU WEI, YE HONG-JUAN, YUAN XIAN-ZHANG, SHEN XUE-CHU. OPTICAL SPECTROSCOPY STUDY ON CARRIER CONCENTRATION AND MOBILITY IN GaN. Acta Physica Sinica, 2000, 49(8): 1614-1619. doi: 10.7498/aps.49.1614
    [4] Song Jian-Jun, Zhang He-Ming, Hu Hui-Yong, Wang Xiao-Yan, Wang Guan-Yu. Hole scattering mechanism in tetragonal strained Si. Acta Physica Sinica, 2012, 61(5): 057304. doi: 10.7498/aps.61.057304
    [5] Dai Yue-Hua, Chen Jun-Ning, Ke Dao-Ming, Sun Jia-E, Hu Yuan. An analytical model of mobility in nano-scaled n-MOSFETs. Acta Physica Sinica, 2006, 55(11): 6090-6094. doi: 10.7498/aps.55.6090
    [6] Zhang Jin-Feng, Wang Ping-Ya, Xue Jun-Shuai, Zhou Yong-Bo, Zhang Jin-Cheng, Hao Yue. High electron mobility lattice-matched InAlN/GaN materials. Acta Physica Sinica, 2011, 60(11): 117305. doi: 10.7498/aps.60.117305
    [7] Dong Hai-Ming. Investigation on mobility of single-layer MoS2 at low temperature. Acta Physica Sinica, 2013, 62(20): 206101. doi: 10.7498/aps.62.206101
    [8] Luo Yang, Duan Yu, Chen Ping, Zang Chun-Liang, Xie Yue, Zhao Yi, Liu Shi-Yong. Preliminary investigation on the method of determining electron mobility of tris (8-hydroxyquinolinato) aluminum by space charge limited current. Acta Physica Sinica, 2012, 61(14): 147801. doi: 10.7498/aps.61.147801
    [9] Di Lin-Jia, Dai Xian-Ying, Song Jian-Jun, Miao Dong-Ming, Zhao Tian-Long, Wu Shu-Jing, Hao Yue. Calculations of energy band structure and mobility in critical bandgap strained Ge1-xSnx based on Sn component and biaxial tensile stress modulation. Acta Physica Sinica, 2018, 67(2): 027101. doi: 10.7498/aps.67.20171969
    [10] Yu Huang-Zhong. Measurement of the hole mobility in the blend system by space charge limited current. Acta Physica Sinica, 2012, 61(8): 087204. doi: 10.7498/aps.61.087204
    [11] Peng Jing-Cui, Li Hong-Jian, Qu Shu, Luo Xiao-Hua, Xu Xue-Mei. . Acta Physica Sinica, 2002, 51(10): 2380-2385. doi: 10.7498/aps.51.2380
    [12] Liu Bin-Li, Tang Yong, Luo Yi-Fei, Liu De-Zhi, Wang Rui-Tian, Wang Bo. Investigation of the prediction model of IGBT junction temperature based on the rate of voltage change. Acta Physica Sinica, 2014, 63(17): 177201. doi: 10.7498/aps.63.177201
    [13] SHANG YE-CHUN, ZHANG YI-MEN, ZHANG YU-MING. MONTE CARLO STUDY ON INTERFACE ROUGHNESS DEPENDENCE OF ELECTRON MOBILITY IN 6H-SiC INVERSION LAYERS. Acta Physica Sinica, 2001, 50(7): 1350-1354. doi: 10.7498/aps.50.1350
    [14] Xu Jing-Ping, Li Chun-Xia, Wu Hai-Ping. Analyses on high-temperature electrical properties of 4H-SiC n-MOSFET. Acta Physica Sinica, 2005, 54(6): 2918-2923. doi: 10.7498/aps.54.2918
    [15] Yang Jing, Li Jing-Zhen, Sun Xiu-Quan, Gong Xiang-Dong. Simulation of step response of silane low-temperature pasma(1). Acta Physica Sinica, 2005, 54(7): 3251-3256. doi: 10.7498/aps.54.3251
    [16] Zheng Xin, Jiang Tian, Cheng Xiang-Ai, Jiang Hou-Man, Lu Qi-Sheng. A new phenomenon of photoconductive InSb detector under the irradiation of out-band laser. Acta Physica Sinica, 2012, 61(4): 047302. doi: 10.7498/aps.61.047302
    [17] Wang Hong-Pei, Wang Guang-Long, Yu Ying, Xu Ying-Qiang, Ni Hai-Qiao, Niu Zhi-Chuan, Gao Feng-Qi. Properties of δ doped GaAs/AlxGa1-xAs 2DEG with embedded InAs quantum dots. Acta Physica Sinica, 2013, 62(20): 207303. doi: 10.7498/aps.62.207303
    [18] Liu Rui-Lan, Wang Xu-Liang, Tang Chao. Identification for hole transporting properties of NPB based on particle swarm optimization algorithm. Acta Physica Sinica, 2014, 63(2): 028105. doi: 10.7498/aps.63.028105
    [19] Tang Xin-Yue, Gao Hong, Pan Si-Ming, Sun Jian-Bo, Yao Xiu-Wei, Zhang Xi-Tian. Electrical characteristics of individual In-doped ZnO nanobelt field effect transistor. Acta Physica Sinica, 2014, 63(19): 197302. doi: 10.7498/aps.63.197302
    [20] Su Qing-Feng, Liu Chang-Zhu, Wang Lin-Jun, Xia Yi-Ben. Hall effect of different textured CVD diamond films. Acta Physica Sinica, 2015, 64(11): 117301. doi: 10.7498/aps.64.117301
  • Citation:
Metrics
  • Abstract views:  833
  • PDF Downloads:  161
  • Cited By: 0
Publishing process
  • Received Date:  19 April 2015
  • Accepted Date:  28 May 2015
  • Published Online:  05 October 2015

Effect of inserted AlN layer on the two-dimensional electron gas in AlxGa1-xN/AlN/GaN

    Corresponding author: Lü Yan-Wu, ywlu@bjtu.edu.cn
  • 1. School of Science, Beijing Jiaotong University, Beijing 100044, China
Fund Project:  Project supported by the National Natural Science Foundation of China (Grant No. 60976070).

Abstract: This paper investigates the changes of electron transport properties in AlxGa1-xN/GaN with an inserted AlN layer. The polarization charge density and two-dimensional electron gas (2DEG) sheet density in AlxGa1-xN/AlN/GaN double heterojunction high electron mobility transistors (HEMT) affected by the spontaneous polarization and piezoelectric polarization in AlxGa1-xN and AlN barrier are studied. Relations of interface roughness scattering and alloy disorder scattering with the AlN thickness are systematically analyzed. It is found that the alloy disorder scattering is the main scattering mechanism in AlxGa1-xN/GaN heterojunction high-electron-mobility transistors, while the interface roughness scattering is the main scattering mechanism in AlxGa1-xN/AlN/GaN double-heterojunction structure. It is also known that the 2DEG sheet density, interface roughness scattering and alloy disorder scattering are depended on the thickness of the inserted AlN layer. The 2DEG sheet density increases slightly and the mobility increases obviously by inserting an AlN layer about 13 nm. Taking Al mole fraction of 0.3 as an example, if without AlN layer, the 2DEG sheet density is 1.47 1013 cm-2 with the mobility limited by the interface roughness scattering of 1.15 104 cm2V-1-1, and the mobility limited by alloy disorder scattering of 6.07 102cm2V-1-1. After inserting an AlN layer of 1 nm, the 2DEG sheet density increases to 1.66 1013cm-2, and the mobility limited by the interface roughness scattering reduces to 7.88 103cm2V-1-1 while the mobility limited by alloy disorder scattering increases greatly up to 1.42 108 cm2V-1-1.

Reference (28)

Catalog

    /

    返回文章
    返回