搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单轴应变对Sb2Se3空穴迁移率的影响研究

张冷 沈宇皓 汤朝阳 吴孔平 张鹏展 刘飞 侯纪伟

引用本文:
Citation:

单轴应变对Sb2Se3空穴迁移率的影响研究

张冷, 沈宇皓, 汤朝阳, 吴孔平, 张鹏展, 刘飞, 侯纪伟

Research on the Effect of Uniaxial Strain on the Hole Mobility of Sb2Se3

Zhang Leng, Shen Yu-hao, Tang Chao-yang, Wu Kong-ping, Zhang Peng-Zhan, Liu Fei, Hou Ji-wei
PDF
导出引用
  • 硒化锑(Sb2Se3)是一种物相简单、元素丰富、经济友好的太阳电池吸收层材料,具有广阔的应用前景。然而,Sb2Se3较弱的导电性成为了限制电池器件性能的重要因素。迁移率是材料与器件的重要电学参数,应变可以改变载流子迁移率,因此,研究应变对Sb2Se3的载流子迁移率特性影响具有实际意义。本文通过密度泛函理论和形变势理论,系统研究了单轴应变对Sb2Se3能带结构、禁带宽度、等能面、有效质量的影响,分析了沿着x、y、z方向的三种单轴应变对载流子沿着x、y、z方向的迁移率影响。研究发现,对于无应变的Sb2Se3μx远大于μy和μz,实验上应该将x方向作为Sb2Se3的特定生长方向(即内建电场方向)。综合应变对带隙、等能面、分态密度及迁移率的影响,本研究认为当应变沿着y轴方向,且压应变为3%的时候,能获得最佳性能的Sb2Se3太阳电池吸收层材料。
    Antimony selenide (Sb2Se3) is of simple-phase, element-rich, and economically friendly material for solar cell absorption layers with broad application prospects. However, the weak conductivity of Sb2Se3 has become a significant factor limiting the performance of solar cell devices. Carrier mobility is an important electrical parameter for both materials and devices, and strain can alter carrier mobility. Therefore, studying the effect of strain on the carrier mobility of Sb2Se3 is of practical significance. In this paper, using density functional theory and deformation potential theory, we systematically investigated the influence of uniaxial strain on the band structure, bandgap width, iso-surface, and effective mass of Sb2Se3. We analyzed the effects of three types of uniaxial strain along the x, y, and z directions on the carrier mobility along the x, y, and z directions. The study found that under these strains, the valence band maximum (VBM) position of Sb2Se3 remained unchanged, and the bandgap decreased overall with increasing strain along the y and z directions, while it increased along the x direction. The variation in bandgap may be related to the coupling strength between the Sb-5p and Se-4p orbitals of the conduction band minimum (CBM). For fully relaxed Sb2Se3, its iso-surface exhibited a distorted cylindrical shape, with low dispersion along the z-axis and high dispersion along the x and y axes, where μx was greater than μy and μz, suggesting that the x direction should be considered as the specific growth direction for Sb2Se3 experimentally. When the strain was applied along the x and z directions, μx gradually increased with increasing strain, while it decreased when the strain was applied along the y direction. Taking into account the combined effects of strain on bandgap, iso-surface, density of states, and mobility, this study suggests that the optimal performance of Sb2Se3 solar cell absorber layer material could be achieved when the strain was applied along the y-axis, with a compressive strain of 3%。
  • [1]

    Green M A, Dunlop E D, Yoshita M 2023 Prog. Photovolt. Res. Appl. 31 651- 663

    [2]

    Chen C, Li K H, Tang J 2022 Sol. RRL 6 2200094

    [3]

    Zhang X, Li C, Sun K, Zhou J, Zhang Z 2021 Adv. Energy Mater. 11 2002614.

    [4]

    Xue D J, Shi H J, Tang J 2015 Acta Phys. Sin. 64 038406 (in Chinese) [薛丁江,石杭杰,唐江 2015 物理学报64 038406]

    [5]

    Zhao Y, Wang S, Li C, Che B, Chen X, Chen H, Tang R, Wang X, Chen G, Wang T, Gong J, Chen T, Xiao X 2022 Energy Environ. Sci. 15 5118-5128

    [6]

    Li Z, Liang X, Li G, Liu H, Zhang H, Guo J, Chen J, Shen K, San X, Yu W, Schropp R, Mai Y 2019 Nat. Commun. 10 125

    [7]

    Takagi S, Hoyt J L, Welser J J, Gibbons J F 1996 J. Appl. Phys. 80 1567-1577.

    [8]

    Welser J, Hoyt J L, Gibbons J F 1992 International Technical Digest on Electron Devices Meeting, San Francisco, CA, USA 1992, December 13-16, 1992 p1000

    [9]

    Song J J, Zhang H M, Hu H Y, Xuan R X, Dai X Y 2010 Acta Phys. Sin. 59 579-582 (in Chinese) [宋建军,张鹤鸣,胡辉勇,宣荣喜,戴显英 2010 物理学报59 579-582]

    [10]

    Jia W, He Y, Cao Y, Wang X, Lin Z, Li W, Xu M, Li E 2022 Micro Nanostructures 168 207300

    [11]

    Datye I M, Daus A, Grady R W., Brenner K, Vaziri S, Pop E 2022 Nano Lett. 22 8052-8059

    [12]

    Ge G, Zhang Y, Yan H, Yang J, Zhou L, Sui X 2021 Appl. Surf. Sci. 538 148009

    [13]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865.

    [14]

    Vadapoo R, Krishnan S, Yilmaz H, Marin C 2011 Phys. Status Solidi B 248 700-705

    [15]

    Bardekn J, Shockley W 1950 Phys. Rev. 80 72-80

    [16]

    Xi J, Long M, Tang L, Wang D, Shuai Z 2012 Nanoscale 4 4348-4369

    [17]

    El-Sayad E A, Moustafa A M, Marzouk S Y 2009 Physica B 404 1119-1127

    [18]

    Kumar A, Ahluwalia P K 2013 Physica B 419 66

    [19]

    Peng X H, Ganti S, Alizadeh A, Sharma P, Kumar S K, and Nayak S K 2006 Phys. Rev. B 74 035339

    [20]

    Wang V, Xu N, Liu J C, Tang G, Geng W T 2021 Comput. Phys. Commun. 267 108033

    [21]

    Kawamura M 2019 Comput. Phys. Commun. 239 197-203

    [22]

    Wang X, Li Z, Kavanagh S R, Ganose A M, Walsh A 2022 Phys. Chem. Chem. Phys. 24 7195-7202

    [23]

    Effective Mass Calculator for Semiconductors, Fonari A, Sutton C https://github.com/afonari/emc [2013-3-18]

    [24]

    Zhang B, Qian X 2022 ACS Appl. Energy Mater. 5 492-502

    [25]

    Zhou Y, Wang L, Chen S, Qin S, Liu X, Chen Jie, Xue D, Luo M, Cao Y, Cheng Y, Sargent E H, Tang J 2015 Nat. Photonics. 9 409-415

    [26]

    Chen C, Bobela D C, Yang Ye, Lu S, Zeng K, Ge C, Yang B, Gao L, Zhao Y, Beard M C, Tang J 2017 Front. Optoelectron. 10 18-30

  • [1] 马泽成, 刘增霖, 程斌, 梁世军, 缪峰. 范德瓦尔斯材料的原位应变工程与应用. 物理学报, doi: 10.7498/aps.73.20240353
    [2] 张冷, 张鹏展, 刘飞, 李方政, 罗毅, 侯纪伟, 吴孔平. 基于形变势理论的掺杂计算Sb2Se3空穴迁移率. 物理学报, doi: 10.7498/aps.73.20231406
    [3] 周展辉, 李群, 贺小敏. AlN/β-Ga2O3异质结电子输运机制. 物理学报, doi: 10.7498/aps.72.20221545
    [4] 黄昊, 牛奔, 陶婷婷, 罗世平, 王颖, 赵晓辉, 王凯, 李志强, 党伟. Sb2Se3薄膜表面和界面超快载流子动力学的瞬态反射光谱分析. 物理学报, doi: 10.7498/aps.71.20211714
    [5] 底琳佳, 戴显英, 宋建军, 苗东铭, 赵天龙, 吴淑静, 郝跃. 基于锡组分和双轴张应力调控的临界带隙应变Ge1-xSnx能带特性与迁移率计算. 物理学报, doi: 10.7498/aps.67.20171969
    [6] 吕懿, 张鹤鸣, 胡辉勇, 杨晋勇, 殷树娟, 周春宇. 单轴应变SiNMOSFET源漏电流特性模型. 物理学报, doi: 10.7498/aps.64.197301
    [7] 白敏, 宣荣喜, 宋建军, 张鹤鸣, 胡辉勇, 舒斌. 压应变Ge/(001)Si1-xGex空穴散射与迁移率模型. 物理学报, doi: 10.7498/aps.64.038501
    [8] 刘宾礼, 唐勇, 罗毅飞, 刘德志, 王瑞田, 汪波. 基于电压变化率的IGBT结温预测模型研究. 物理学报, doi: 10.7498/aps.63.177201
    [9] 董海明. 低温下二硫化钼电子迁移率研究. 物理学报, doi: 10.7498/aps.62.206101
    [10] 宋建军, 张鹤鸣, 胡辉勇, 王晓艳, 王冠宇. 四方晶系应变Si空穴散射机制. 物理学报, doi: 10.7498/aps.61.057304
    [11] 於黄忠. 空间电荷限制电流法测量共混体系中空穴的迁移率. 物理学报, doi: 10.7498/aps.61.087204
    [12] 骆杨, 段羽, 陈平, 臧春亮, 谢月, 赵毅, 刘式墉. 利用空间电荷限制电流方法确定三(8-羟基喹啉)铝的电子迁移率特性初步研究. 物理学报, doi: 10.7498/aps.61.147801
    [13] 张金风, 王平亚, 薛军帅, 周勇波, 张进成, 郝跃. 高电子迁移率晶格匹配InAlN/GaN材料研究. 物理学报, doi: 10.7498/aps.60.117305
    [14] 刘玉敏, 俞重远, 任晓敏. 隔离层厚度和盖层厚度对InAs/GaAs量子点应变分布和发射波长的影响. 物理学报, doi: 10.7498/aps.58.66
    [15] 代月花, 陈军宁, 柯导明, 孙家讹, 胡 媛. 纳米MOSFET迁移率解析模型. 物理学报, doi: 10.7498/aps.55.6090
    [16] 杨 靖, 李景镇, 孙秀泉, 龚向东. 硅烷低温等离子体阶跃响应的仿真(1). 物理学报, doi: 10.7498/aps.54.3251
    [17] 徐静平, 李春霞, 吴海平. 4H-SiC n-MOSFET的高温特性分析. 物理学报, doi: 10.7498/aps.54.2918
    [18] 许雪梅, 彭景翠, 李宏建, 瞿述, 罗小华. 载流子迁移率对单层有机发光二极管复合效率的影响. 物理学报, doi: 10.7498/aps.51.2380
    [19] 袁德荣, 乔灵芝. 带有非对称双阱势的氢键链中的扭结孤子激发. 物理学报, doi: 10.7498/aps.50.394
    [20] 李志锋, 陆 卫, 叶红娟, 袁先璋, 沈学础, G.Li, S.J.Chua. GaN载流子浓度和迁移率的光谱研究. 物理学报, doi: 10.7498/aps.49.1614
计量
  • 文章访问数:  144
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 上网日期:  2024-04-09

/

返回文章
返回