Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Development and application of communication band narrow linewidth lasers

Jiao Dong-Dong Gao Jing Liu Jie Deng Xue Xu Guan-Jun Chen Jiu-Peng Dong Rui-Fang Liu Tao Zhang Shou-Gang

Development and application of communication band narrow linewidth lasers

Jiao Dong-Dong, Gao Jing, Liu Jie, Deng Xue, Xu Guan-Jun, Chen Jiu-Peng, Dong Rui-Fang, Liu Tao, Zhang Shou-Gang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Ultra-stable lasers at optical communication wavelengths have important applications in developing optical frequency transfer via optical fibers. We report the recent development of a 1550 nm stable laser system built at National Time Service Center and its preliminary application in optical frequency transfer via laboratory fibers. In the experiment, the conventional Pound-Drever-Hall(PDH) frequency stabilization technology is implemented to achieve the ultra-stable laser at the wavelength of 1550 nm. The output of a single laser source is split and locked onto the resonant frequency of two independent reference cavities, of 344000 and 296000 respectively. The frequency of the laser source is actively stabilized to the first reference cavity by piezo and external frequency shifters simultaneously and the total control bandwidth is measured to be 50 kHz. Then the laser frequency is shifted and stabilized to the second reference cavity by an acousto-optical modulator. A 5 m long single-mode fiber is used to bring the first laser beam to the second reference cavity which unfortunately induces unexpected phase noise by environmental distortions. The laser linewidth broadened is determined to be 0.27 Hz by the beat note measurement between the input and output beams of the fiber. To evaluate the frequency stability of the laser, the frequency control signal within the control bandwidth of the second stable laser system is analyzed by a spectrum analyzer and a frequency counter. The control signal shows a Lorentz linewidth of 2.7 Hz and a frequency stability of 2.510-14/s, corresponding to a single laser linewidth of 1.9 Hz with a frequency stability of 1.710-14/s if the two stable lasers have similar frequency stability. Applying this ultra-stable laser system as the laser source for the fiber-based optical frequency transfer, a short-term frequency transfer stability of 7.510-17/s is demonstrated through a 50 km-long fiber spool, while a frequency transfer stability of 2.410-16/s is achieved by a similar setup except that the laser source is a kHz-level linewidth laser. In the experiment an Agilent 53232 A frequency counter is applied to record the beat note signal in the auto mode. In the end, we discuss the possible improvements of the stable laser system, including the miniaturization of the optical setup, optimization of the control bandwidth and shortening of the response time of control loop.
      Corresponding author: Dong Rui-Fang, dongruifang@ntsc.ac.cn;taoliu@ntsc.ac.cn ; Liu Tao, dongruifang@ntsc.ac.cn;taoliu@ntsc.ac.cn
    • Funds: Project supported by the Major Scientific Instruments and National Development Funding Projects of China (Grant No. 61127901), the National Natural Science Foundation of China (Grant Nos. 11273024, 61025023), the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11403031), the Fund from the FirstYouth Top-Notch Talent Program of Organization Department of the CPC Central Committee (Grant No. [2013]33), the fund for the cross and cooperative science and technology innovation team project of the CAS, China (Grant No. (2012) 119), and the Key Deployment Project of the Chinese Academy of Sciences, China (Grant No. KJZD-EW-W02).
    [1]

    Harry G M, Armandula H, Black E, Crooks D R M, Cagnoli G, Hough J, Murray P, Reid S, Rowan S, Sneddon P, Fejer M M, Route R, Penn S D 2006 Appl. Opt. 45 1569

    [2]

    Willke B, Danzmann K, Frede M, King P, Kracht D, Kwee P, Puncken O, Savage R L, Schulz B, Seifert F, Veltkamp C, Wagner S, Weels P, Winkelmann L 2008 Class. Quantum Grav. 25 114040

    [3]

    Rafac R J, Young B C, Beall J A, Itano W M, Wineland D J, Bergquist J C 2000 Phys. Rev. Lett. 85 2462

    [4]

    Boyd M M, Zelevinsky T, Ludlow A D, Foreman S M, Blatt S, Ido T, Ye J 2006 Science 314 1430

    [5]

    Weyers S, Lipphardt B, Schnatz H 2009 Phys. Rev. A 79 031803

    [6]

    Jiang H F 2010 Ph. D. Dissertation (France: University Pairs 13)

    [7]

    Kessler T, Hagemann C, Grebing C, Legero T, Sterr U, Riehle F, Martin M J, Chen L, Ye J 2012 Nat. Photon. 6 687

    [8]

    Zhao Y, Wang Q, Meng F, Lin Y G, Wang S K, Li Y, Lin B K, Cao S Y, Cao J P, Fang Z J, Li T C, Zang E J 2012 Opt. Lett. 37 4729

    [9]

    Suo R, Meng F, Fang F, Li T C 2013 The 4th China Satellite Navigation ConferenceWuhan, China, May 15-17, 2013 p141

    [10]

    Black E D 2001 Am. J. Phys. 69 79

    [11]

    Jiang Y Y 2012 Ph. D. Dissertation(Shanghai: East China Normal University) (in Chinese) [蒋燕义 2012 华东师范大学博士论文 (上海: 华东师范大学)]

    [12]

    Ma L S, Jungner P, Ye J, Hall J L 1994 Opt. Lett. 19 1777

    [13]

    Liu J, Gao J, Xu G J, Jiao D D, Yan L L, Dong R F, Jiang H F, Liu T, Zhang S G 2015 Acta Phys. Sin. 64 120602(in Chinese) [刘杰, 高静, 许冠军, 焦东东, 闫露露, 董瑞芳, 刘涛, 张首刚 2015 物理学报 64 120602]

  • [1]

    Harry G M, Armandula H, Black E, Crooks D R M, Cagnoli G, Hough J, Murray P, Reid S, Rowan S, Sneddon P, Fejer M M, Route R, Penn S D 2006 Appl. Opt. 45 1569

    [2]

    Willke B, Danzmann K, Frede M, King P, Kracht D, Kwee P, Puncken O, Savage R L, Schulz B, Seifert F, Veltkamp C, Wagner S, Weels P, Winkelmann L 2008 Class. Quantum Grav. 25 114040

    [3]

    Rafac R J, Young B C, Beall J A, Itano W M, Wineland D J, Bergquist J C 2000 Phys. Rev. Lett. 85 2462

    [4]

    Boyd M M, Zelevinsky T, Ludlow A D, Foreman S M, Blatt S, Ido T, Ye J 2006 Science 314 1430

    [5]

    Weyers S, Lipphardt B, Schnatz H 2009 Phys. Rev. A 79 031803

    [6]

    Jiang H F 2010 Ph. D. Dissertation (France: University Pairs 13)

    [7]

    Kessler T, Hagemann C, Grebing C, Legero T, Sterr U, Riehle F, Martin M J, Chen L, Ye J 2012 Nat. Photon. 6 687

    [8]

    Zhao Y, Wang Q, Meng F, Lin Y G, Wang S K, Li Y, Lin B K, Cao S Y, Cao J P, Fang Z J, Li T C, Zang E J 2012 Opt. Lett. 37 4729

    [9]

    Suo R, Meng F, Fang F, Li T C 2013 The 4th China Satellite Navigation ConferenceWuhan, China, May 15-17, 2013 p141

    [10]

    Black E D 2001 Am. J. Phys. 69 79

    [11]

    Jiang Y Y 2012 Ph. D. Dissertation(Shanghai: East China Normal University) (in Chinese) [蒋燕义 2012 华东师范大学博士论文 (上海: 华东师范大学)]

    [12]

    Ma L S, Jungner P, Ye J, Hall J L 1994 Opt. Lett. 19 1777

    [13]

    Liu J, Gao J, Xu G J, Jiao D D, Yan L L, Dong R F, Jiang H F, Liu T, Zhang S G 2015 Acta Phys. Sin. 64 120602(in Chinese) [刘杰, 高静, 许冠军, 焦东东, 闫露露, 董瑞芳, 刘涛, 张首刚 2015 物理学报 64 120602]

  • [1] Liu Jie, Gao Jing, Xu Guan-Jun, Jiao Dong-Dong, Yan Lu-Lu, Dong Rui-Fang, Jiang Hai-Feng, Liu Tao, Zhang Shou-Gang. Study of optical frequency transfer via fiber. Acta Physica Sinica, 2015, 64(12): 120602. doi: 10.7498/aps.64.120602
    [2] Liu Rui, Yu Ya-Fei, Zhang Zhi-Ming. Generation of narrowband triphoton frequency-entangled states via cold-atom ensembles. Acta Physica Sinica, 2014, 63(14): 144203. doi: 10.7498/aps.63.144203
    [3] Ruan Jun, Wang Ye-Bing, Chang Hong, Jiang Hai-Feng, Liu Tao, Dong Rui-Fang, Zhang Shou-Gang. Progress towards primary frequency standard. Acta Physica Sinica, 2015, 64(16): 160308. doi: 10.7498/aps.64.160308
    [4] Cao Shi-Ying, Meng Fei, Lin Bai-Ke, Fang Zhan-Jun, Li Tian-Chu. Precise frequency control of an Er-doped fiber comb. Acta Physica Sinica, 2012, 61(13): 134205. doi: 10.7498/aps.61.134205
    [5] Wang Zhao-Hua, Wei Zhi-Yi, Zhang Jie. Measurement of femtosecond laser pulses using PG frequency-resolved optical gating. Acta Physica Sinica, 2005, 54(3): 1194-1199. doi: 10.7498/aps.54.1194
    [6] Wang Zhao-Hua, Wei Zhi-Yi, Teng Hao, Wang Peng, Zhang Jie. Measurement of femtosecond laser pulses using SHG frequency-resolved optical gating technique. Acta Physica Sinica, 2003, 52(2): 362-366. doi: 10.7498/aps.52.362
    [7] Wen Jin-Hui, Hu Ting, Wu Qin-Fei. Measurement of ultrashort laser pulses with rapid-scanning frequency-resolved optical gating device. Acta Physica Sinica, 2019, 68(11): 110601. doi: 10.7498/aps.68.20190034
    [8] Li Xiao-Qiu, Feng Xiao-Guo, Gao Jin-Song. Optically transparent band-pass frequency selective surface. Acta Physica Sinica, 2008, 57(5): 3193-3197. doi: 10.7498/aps.57.3193
    [9] Jiao Jian, Gao Jin-Song, Xu Nian-Xi, Feng Xiao-Guo, Hu Hai-Xiang. Study on the lumped parameters of FSS in terms of the transfer function. Acta Physica Sinica, 2014, 63(13): 137301. doi: 10.7498/aps.63.137301
    [10] Meng Fei, Cao Shi-Ying, Cai Yue, Wang Gui-Zhong, Cao Jian-Ping, Li Tian-Chu, Fang Zhan-Jun. Study of the femtosecond fiber comb and absolute optical frequency measurement. Acta Physica Sinica, 2011, 60(10): 100601. doi: 10.7498/aps.60.100601
    [11] Deng Yu-Qiang, Lang Li-Ying, Xing Qi-Rong, Cao Shi-Ying, Yu Jing, Xu Tao, Li Jian, Xiong Li-Min, Wang Qing-Yue, Zhang Zhi-Gang. Terahertz time-frequency analysis with Gabor wavelet-transform. Acta Physica Sinica, 2008, 57(12): 7747-7752. doi: 10.7498/aps.57.7747
    [12] Meng Qing-Lin, Yuan Meng, Mou Hong-Yu, Chen You-Yuan, Feng Hai-Hong. Effects of envelope modulation rate and carrier frequency on auditory temporal modulation detection. Acta Physica Sinica, 2012, 61(16): 164302. doi: 10.7498/aps.61.164302
    [13] Jia Shi, Yu Jin-Long, Wang Ju, Wang Zi-Xiong, Chen Bin. Research of optical short pulse source with tunable repetition rate and ultra-low timing jitter. Acta Physica Sinica, 2015, 64(18): 184201. doi: 10.7498/aps.64.184201
    [14] Ge Ye, Hu Yi-Hua, Shu Rong, Hong Guang-Lie. A novel frequency stabilization method for the seed laser of the pulse optical parametric oscillator in differential absorption lidar. Acta Physica Sinica, 2015, 64(2): 020702. doi: 10.7498/aps.64.020702
    [15] Han Hai_Nian, Zhang Wei, Wang Peng, Li De_Hua, Wei Zhi_Yi, Shen Nai_Chen, Nie Yu_Xin, Gao Yu_Ping, Zhang Shou_Gang, Li Shi_Qun. Precise control of femtosecond Ti:sapphire laser frequency comb. Acta Physica Sinica, 2007, 56(5): 2760-2764. doi: 10.7498/aps.56.2760
    [16] Wang Nan, Han Hai-Nian, Li De-Hua, Wei Zhi-Yi. Spatial dispersion of pulse shaping system with high resolution based on the frequency comb. Acta Physica Sinica, 2012, 61(18): 184201. doi: 10.7498/aps.61.184201
    [17] Zhang Jian, Gao Jin-Song, Xu Nian-Xi. Design and study of optically transparent band-pass frequency selective surface. Acta Physica Sinica, 2013, 62(14): 147304. doi: 10.7498/aps.62.147304
    [18] Wu Han-Zhong, Cao Shi-Ying, Zhang Fu-Min, Qu Xing-Hua. Spectral interferometry based absolute distance measurement using frequency comb. Acta Physica Sinica, 2015, 64(2): 020601. doi: 10.7498/aps.64.020601
    [19] Liu Ting-Yang, Zhang Fu-Min, Wu Han-Zhong, Li Jian-Shuang, Shi Yong-Qiang, Qu Xing-Hua. Absolute distance ranging by means of chirped pulse interferometry. Acta Physica Sinica, 2016, 65(2): 020601. doi: 10.7498/aps.65.020601
    [20] Xu Xin, Jin Xue-Ying, Gao Hao-Ran, Cheng Jie, Lu Yang, Chen Dong, Yu Lian-Dong. Analysis of frequency tuning process of dual coupled optical microcavities. Acta Physica Sinica, 2020, 69(18): 184207. doi: 10.7498/aps.69.20200530
  • Citation:
Metrics
  • Abstract views:  1241
  • PDF Downloads:  251
  • Cited By: 0
Publishing process
  • Received Date:  22 March 2015
  • Accepted Date:  12 May 2015
  • Published Online:  05 October 2015

Development and application of communication band narrow linewidth lasers

    Corresponding author: Dong Rui-Fang, dongruifang@ntsc.ac.cn;taoliu@ntsc.ac.cn
    Corresponding author: Liu Tao, dongruifang@ntsc.ac.cn;taoliu@ntsc.ac.cn
  • 1. National Time Service Centre, Chinese Academy of Sciences, Xi'an 710600, China;
  • 2. University of Chinese Academy of Sciences, Beijing 100049, China;
  • 3. Key Laboratory of Time and Frequency Standards, Chinese Academy of Sciences, Xi'an 710600, China
Fund Project:  Project supported by the Major Scientific Instruments and National Development Funding Projects of China (Grant No. 61127901), the National Natural Science Foundation of China (Grant Nos. 11273024, 61025023), the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11403031), the Fund from the FirstYouth Top-Notch Talent Program of Organization Department of the CPC Central Committee (Grant No. [2013]33), the fund for the cross and cooperative science and technology innovation team project of the CAS, China (Grant No. (2012) 119), and the Key Deployment Project of the Chinese Academy of Sciences, China (Grant No. KJZD-EW-W02).

Abstract: Ultra-stable lasers at optical communication wavelengths have important applications in developing optical frequency transfer via optical fibers. We report the recent development of a 1550 nm stable laser system built at National Time Service Center and its preliminary application in optical frequency transfer via laboratory fibers. In the experiment, the conventional Pound-Drever-Hall(PDH) frequency stabilization technology is implemented to achieve the ultra-stable laser at the wavelength of 1550 nm. The output of a single laser source is split and locked onto the resonant frequency of two independent reference cavities, of 344000 and 296000 respectively. The frequency of the laser source is actively stabilized to the first reference cavity by piezo and external frequency shifters simultaneously and the total control bandwidth is measured to be 50 kHz. Then the laser frequency is shifted and stabilized to the second reference cavity by an acousto-optical modulator. A 5 m long single-mode fiber is used to bring the first laser beam to the second reference cavity which unfortunately induces unexpected phase noise by environmental distortions. The laser linewidth broadened is determined to be 0.27 Hz by the beat note measurement between the input and output beams of the fiber. To evaluate the frequency stability of the laser, the frequency control signal within the control bandwidth of the second stable laser system is analyzed by a spectrum analyzer and a frequency counter. The control signal shows a Lorentz linewidth of 2.7 Hz and a frequency stability of 2.510-14/s, corresponding to a single laser linewidth of 1.9 Hz with a frequency stability of 1.710-14/s if the two stable lasers have similar frequency stability. Applying this ultra-stable laser system as the laser source for the fiber-based optical frequency transfer, a short-term frequency transfer stability of 7.510-17/s is demonstrated through a 50 km-long fiber spool, while a frequency transfer stability of 2.410-16/s is achieved by a similar setup except that the laser source is a kHz-level linewidth laser. In the experiment an Agilent 53232 A frequency counter is applied to record the beat note signal in the auto mode. In the end, we discuss the possible improvements of the stable laser system, including the miniaturization of the optical setup, optimization of the control bandwidth and shortening of the response time of control loop.

Reference (13)

Catalog

    /

    返回文章
    返回