Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ultra-low noise microwave frequency generation based on optical frequency comb

Shao Xiao-Dong Han Hai-Nian Wei Zhi-Yi

Citation:

Ultra-low noise microwave frequency generation based on optical frequency comb

Shao Xiao-Dong, Han Hai-Nian, Wei Zhi-Yi
PDF
HTML
Get Citation
  • Low noise microwave frequency has important applications in radar, long baseline interferometer and other fields. The phase noise of microwave signal generated by optical frequency comb is lower than –100 dBc/Hz at 1 Hz frequency offset and –170 dBc/ Hz at high frequencies (> 100 kHz), which is the lowest in the noise produced by all existing microwave frequency generation technologies. This paper introduces the basic principle of optical frequency comb generating microwave frequency, analyzes and summarizes various kinds of noise of microwave frequency signals and noise suppressing technologies. Then the low noise measuring methods are introduced, and several typical experimental devices generating microwave frequency and the obtained results are described. With the continuous improvement of optical frequency comb and noise suppression technology, microwave frequency source with very low noise will have wider application prospects and application fields.
      Corresponding author: Han Hai-Nian, hnhan@iphy.ac.cn
    • Funds: Project supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant Nos. XDA1502040404, XDB21010400)
    [1]

    Jones D J, Diddams S A, Ranka J K, Stentz A, Windeler R S, Hall J L, Cundiff S T 2000 Science 288 635Google Scholar

    [2]

    Hansch T W 2006 Rev. Mod. Phys. 78 1297Google Scholar

    [3]

    Hall J L 2006 Rev. Mod. Phys. 78 1279Google Scholar

    [4]

    Murphy M T, Udem T, Holzwarth R, Sizmann A, Pasquini L, Araujo-Hauck C, Dekker H, D'Odorico S, Fischer M, Hansch T W, Manescau A 2007 Mon. Not. Roy. Astron. Soc. 380 839Google Scholar

    [5]

    Schiller S 2002 Opt. Lett. 27 766Google Scholar

    [6]

    Hyun S, Kim Y J, Kim Y, Kim S W 2010 CIRP Ann-Manuf. Technol. 59 555Google Scholar

    [7]

    Baltuska A, Udem T, Uiberacker M, Hentschel M, Goulielmakis E, Gohle C, Holzwarth R, Yakovlev V S, Scrinzi A, Hansch T W, Krausz F 2003 Nature 421 611Google Scholar

    [8]

    Udem T, Holzwarth R, Hansch T W 2002 Nature 416 233Google Scholar

    [9]

    Giorgetta F R, Swann W C, Sinclair L C, Baumann E, Coddington I, Newbury N R 2013 Nat. Photonics 7 435

    [10]

    Scheer J A, IEEE 1990 Coherent Radar System Performance Estimation (New York: IEEE) pp125−128

    [11]

    Santarelli C, Laurent P, Lemonde P, Clairon A, Mann A G, Chang S, Luiten A N, Salomon C 1999 Phys. Rev. Lett. 82 4619Google Scholar

    [12]

    Kim J, Cox J A, Chen J, Kaertner F X 2008 Nat. Photonics 2 733Google Scholar

    [13]

    Savchenkov A A, Rubiola E, Matsko A B, Ilchenko V S, Maleki L 2008 Opt. Express 16 4130Google Scholar

    [14]

    Yao Y, Chen X F, Dai Y T, Xie S Z 2006 IEEE Photonics Technol. Lett. 18 187Google Scholar

    [15]

    Bartels A, Diddams S A, Oates C W, Wilpers G, Bergquist J C, Oskay W H, Hollberg L 2005 Opt. Lett. 30 667Google Scholar

    [16]

    Ivanov E N, McFerran J J, Diddams S A, Hollberg L 2007 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54 736Google Scholar

    [17]

    Millo J, Boudot R, Lours M, Bourgeois P Y, Luiten A N, Le Coq Y, Kersale Y, Santarelli G 2009 Opt. Lett. 34 3707Google Scholar

    [18]

    Millo J, Abgrall M, Lours M, English E M L, Jiang H, Guena J, Clairon A, Tobar M E, Bize S, Le Coq Y, Santarelli G 2009 Appl. Phys. Lett. 94 1411053

    [19]

    Diddams S A, Kirchner M, Fortier T, Braje D, Weiner A M, Hollberg L 2009 Opt. Express 17 3331Google Scholar

    [20]

    Zhang W, Xu Z, Lours M, Boudot R, Kersale Y, Santarelli G, Le Coq Y 2010 Appl. Phys. Lett. 96 2111053

    [21]

    Fortier T M, Kirchner M S, Quinlan F, Taylor J, Bergquist J C, Rosenband T, Lemke N, Ludlow A, Jiang Y, Oates C W, Diddams S A 2011 Nat. Photonics 5 425Google Scholar

    [22]

    Swann W C, Baumann E, Giorgetta F R, Newbury N R 2011 Opt. Express 19 24387Google Scholar

    [23]

    Haboucha A, Zhang W, Li T, Lours M, Luiten A N, Le Coq Y, Santarelli G 2011 Opt. Lett. 36 3654Google Scholar

    [24]

    Quinlan F, Fortier T M, Kirchner M S, Taylor J A, Thorpe M J, Lemke N, Ludlow A D, Jiang Y Y, Diddams S A 2011 Opt. Lett. 36 3260Google Scholar

    [25]

    Fortier T M, Nelson C W, Hati A, Quinlan F, Taylor J, Jiang H, Chou C W, Rosenband T, Lemke N, Ludlow A, Howe D, Oates C W, Diddams S A 2012 Appl. Phys. Lett. 100 2311113

    [26]

    Jung K, Kim J 2012 Opt. Lett. 37 2958Google Scholar

    [27]

    Meyer S A, Fortier T M, Lecomte S, Diddams S A 2013 Appl. Phys. B-Lasers Opt. 112 565Google Scholar

    [28]

    Jung K, Shin J, Kim J 2013 IEEE Photonics J. 5 55009066Google Scholar

    [29]

    Fortier T M, Quinlan F, Hati A, Nelson C, Taylor J A, Fu Y, Campbell J, Diddams S A 2013 Opt. Lett. 38 1712Google Scholar

    [30]

    Didier A, Millo J, Grop S, Dubois B, Bigler E, Rubiola E, Lacroute C, Kersale Y 2015 Appl. Optics 54 3682Google Scholar

    [31]

    Ludlow A D, Huang X, Notcutt M, Zanon-Willette T, Foreman S M, Boyd M M, Blatt S, Ye J 2007 Opt. Lett. 32 641Google Scholar

    [32]

    Millo J, Magalhaes D V, Mandache C, Le Coq Y, English E M L, Westergaard P G, Lodewyck J, Bize S, Lemonde P, Santarelli G 2009 Phys. Rev. A 79 053829Google Scholar

    [33]

    Jiang Y Y, Ludlow A D, Lemke N D, Fox R W, Sherman J A, Ma L S, Oates C W 2011 Nat. Photonics 515 8

    [34]

    Newbury N R, Washburn B R 2005 IEEE J. Quant. Electron. 41 1388Google Scholar

    [35]

    Wang H-B, Han H-N, Zhang Z-Y, Shao X-D, Zhu J-F, Wei Z-Y 2020 Chin. Phys. B 29 030601Google Scholar

    [36]

    Pang L H, Han H N, Zhao Z B, Liu W J, Wei Z Y 2016 Opt. Express 24 28994

    [37]

    Yao Y, Jiang Y, Yu H, Bi Z, Ma L 2016 Natl. Sci. Rev. 3 463Google Scholar

    [38]

    Oelker E, Hutson R B, Kennedy C J, Sonderhouse L, Bothwell T, Goban A, Kedar D, Sanner C, Robinson J M, Marti G E, Matei D G, Legero T, Giunta M, Holzwarth R, Riehle F, Sterr U, Ye J 2019 Nat. Photonics 13 714Google Scholar

    [39]

    Hudson D D, Holman K W, Jones R J, Cundiff S T, Ye J, Jones D J 2005 Opt. Lett. 30 2948Google Scholar

    [40]

    Li Z, Fu Y, Piels M, Pan H, Beling A, Bowers J E, Campbell J C 2011 Opt. Express 19 385Google Scholar

    [41]

    Quinlan F, Fortier T M, Jiang H, Hati A, Nelson C, Fu Y, Campbell J C, Diddams S A 2013 Nat. Photonics 7 290Google Scholar

    [42]

    Endo M, Shoji T D, Schibli T R 2018 IEEE J. Sel. Top. Quantum Electron. 24 1102413Google Scholar

    [43]

    韩海年, 魏志义 2016 物理 45 449Google Scholar

    Han H N, Wei Z Y 2016 Physics 45 449Google Scholar

    [44]

    Xie X P, Bouchand R, Nicolodi D, Giunta M, Hansel W, Lezius M, Joshi A, Datta S, Alexandre C, Lours M, Tremblin P A, Santarelli G, Holzwarth R, Le Coq Y 2017 Nature Photonics 11 44Google Scholar

    [45]

    Lee D, Nakamura T, Campbell J C, Diddams S A, Quinlan F Conference on Lasers and Electro-Optics Washington, DC, 2020/05/10 pSF1 G.7

    [46]

    Jiang H F, Taylor J, Quinlan F, Fortier T, Diddams S A 2011 IEEE Photonics J. 3 1004Google Scholar

    [47]

    Quinlan F, Baynes F N, Fortier T M, Zhou Q G, Cross A, Campbell J C, Diddams S A 2014 Opt. Lett. 39 1581Google Scholar

    [48]

    Walls W F, IEEE 1992 Cross-Correlation Phase Noise Measurements (New York: IEEE) pp257−261

    [49]

    Rubiola E, Giordano V 2000 Rev. Sci. Instrum. 71 Pii [s0034-6748(00)01708-1] 3085

    [50]

    Hati A, Nelson C W, Howe D A 2016 Rev. Sci. Instrum. 87 0347088

    [51]

    Ivanov E N, Tobar M E, Woode R A 1998 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45 1526Google Scholar

    [52]

    Rubiola E, Vernotte F 2010 Physics

    [53]

    Diddams S A, Bartels A, Ramond T M, Oates C W, Bize S, Curtis E A, Bergquist J C, Hollberg L 2003 IEEE J. Sel. Top. Quantum Electron. 9 1072Google Scholar

    [54]

    McFerran J J, Ivanov E N, Bartels A, Wilpers G, Oates C W, Diddams S A, Hollberg L 2005 Electronics Lett. 41 650Google Scholar

    [55]

    Lucas E, Brochard P, Bouchand R, Schilt S, Sudmeyer T, Kippenberg T J 2020 Nat. Commun. 11 3748Google Scholar

    [56]

    Ivanov E N, Tobar M E 2009 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56 263Google Scholar

    [57]

    Fluhr C, Grop S, Dubois B, Kersale Y, Rubiola E, Giordano V 2016 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 63 915Google Scholar

    [58]

    Weyers S, Gerginov V, Kazda M, Rahm J, Lipphardt B, Dobrev G, Gibble K 2018 Metrologia 55 789Google Scholar

    [59]

    Gill P 2011 Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci. 369 4109

    [60]

    Nakamura T, Davila-Rodriguez J, Leopardi H, Sherman J A, Fortier T M, Xie X J, Campbell J C, McGrew W F, Zhang X G, Hassan Y S, Nicolodi D, Beloy K, Ludlow A D, Diddams S A, Quinlan F 2020 Science 368 889Google Scholar

    [61]

    Gaeta A L, Lipson M, Kippenberg T J 2019 Nat. Photonics 13 158Google Scholar

    [62]

    Kovach A, Chen D Y, He J H, Choi H, Dogan A H, Ghasemkhani M, Taheri H, Armani A M 2020 Adv. Opt. Photonics 12 135Google Scholar

    [63]

    Wang W, Wang L, Zhang W 2020 Advanced Photonics 2 1

    [64]

    Nand N R, Hartnett J G, Ivanov E N, Santarelli G 2011 IEEE Trans. Microw. Theory Techn. 59 2978Google Scholar

    [65]

    Wolf P, Bize S, Clairon A, Luiten A N, Santarelli G, Tobar M E 2003 Phys. Rev. Lett. 90 060402Google Scholar

    [66]

    Stanwix P L, Tobar M E, Wolf P, Susli M, Locke C R, Ivanov E N, Winterflood J, van Kann F 2005 Phys. Rev. Lett. 95 0404044

    [67]

    Rioja M, Dodson R, Asaki Y, Hartnett J, Tingay S 2012 Astron. J. 144 121Google Scholar

    [68]

    Santarelli G, Audoin C, Makdissi A, Laurent P, Dick G J, Clairon A 1998 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45 887Google Scholar

    [69]

    Marin-Palomo P, Kemal J N, Karpov M, Kordts A, Pfeifle J, Pfeiffer M H P, Trocha P, Wolf S, Brasch V, Anderson M H, Rosenberger R, Vijayan K, Freude W, Kippenberg T J, Koos C 2017 Nature 546 274Google Scholar

    [70]

    Jiang Z, Huang C B, Leaird D E, Weiner A M 2007 Nat. Photonics 1 463Google Scholar

    [71]

    Deakin C, Liu Z X 2020 Opt. Lett. 45 173Google Scholar

  • 图 1  光学频率梳的时域和频域模型

    Figure 1.  Time domain and frequency domain models of optical frequency comb.

    图 2  光学频率梳的锁定方式 (a)锁定到微波频率参考; (b)锁定到光学频率参考

    Figure 2.  Locking motheds of optical frequency comb: (a) Lock to microwave frequency reference; (b) lock to optical frequency reference.

    图 3  微波频率产生原理示意图

    Figure 3.  Schematic of microwave frequency generation.

    图 4  (a)掺铒光梳分频产生的10 GHz微波信号的相位噪声; (b)${f_{{\rm{ceo}}}}$锁定的剩余噪声; (c)${f_{\rm{b}}}$锁定的剩余噪声; (d) RIN经由光电探测器转换为的相位噪声[24]

    Figure 4.  (a) Phase noise of 10 GHz microwave signal generated by erbium-doped optical comb; (b)${f_{{\rm{ceo}}}}$ residual noise; (c) ${f_{\rm{b}}}$ residual noise; (d) phase noise converted by RIN via photodetector[24]

    图 5  频域中的散粒噪声产生原理[41]

    Figure 5.  Schematic of shot noise generation in frequency domain[41].

    图 6  MZI光纤脉冲重复频率倍频装置示意图[23]

    Figure 6.  An illustration of the cascaded MZI scheme used to achieve a pulse rate multiplication[23].

    图 7  双通道互相关测量技术原理图[52]

    Figure 7.  Basics of the cross-spectrum method[52].

    图 8  两种互相关测量装置

    Figure 8.  Two types of cross correlation measuring devices.

    图 9  10 GHz范围低噪声微波源研究进展

    Figure 9.  Research progress of low noise microwave sourcesin 10 GHz range.

    图 10  10 GHz低噪声微波的实验装置示意图[21]

    Figure 10.  Schematic of the experimental set-up used for generation and characterization of the 10 GHz low-noise microwaves[21].

    图 11  混合微波振荡器的实验装置和测量结果[25]

    Figure 11.  Generation and phase noise of 10 GHz signals from hybrid oscillators[25].

    图 12  低噪声微波频率产生系统实验装置图[44]

    Figure 12.  Experimental set-up for low-noise microwave generation and characterization[44].

    图 13  光学原子钟分频产生微波频率[60]

    Figure 13.  Coherent optical clock down-conversion[60].

    图 14  微腔光梳产生微波频率原理示意图[55]

    Figure 14.  Principle of operation of the Kerr comb-based transfer oscillator[55].

  • [1]

    Jones D J, Diddams S A, Ranka J K, Stentz A, Windeler R S, Hall J L, Cundiff S T 2000 Science 288 635Google Scholar

    [2]

    Hansch T W 2006 Rev. Mod. Phys. 78 1297Google Scholar

    [3]

    Hall J L 2006 Rev. Mod. Phys. 78 1279Google Scholar

    [4]

    Murphy M T, Udem T, Holzwarth R, Sizmann A, Pasquini L, Araujo-Hauck C, Dekker H, D'Odorico S, Fischer M, Hansch T W, Manescau A 2007 Mon. Not. Roy. Astron. Soc. 380 839Google Scholar

    [5]

    Schiller S 2002 Opt. Lett. 27 766Google Scholar

    [6]

    Hyun S, Kim Y J, Kim Y, Kim S W 2010 CIRP Ann-Manuf. Technol. 59 555Google Scholar

    [7]

    Baltuska A, Udem T, Uiberacker M, Hentschel M, Goulielmakis E, Gohle C, Holzwarth R, Yakovlev V S, Scrinzi A, Hansch T W, Krausz F 2003 Nature 421 611Google Scholar

    [8]

    Udem T, Holzwarth R, Hansch T W 2002 Nature 416 233Google Scholar

    [9]

    Giorgetta F R, Swann W C, Sinclair L C, Baumann E, Coddington I, Newbury N R 2013 Nat. Photonics 7 435

    [10]

    Scheer J A, IEEE 1990 Coherent Radar System Performance Estimation (New York: IEEE) pp125−128

    [11]

    Santarelli C, Laurent P, Lemonde P, Clairon A, Mann A G, Chang S, Luiten A N, Salomon C 1999 Phys. Rev. Lett. 82 4619Google Scholar

    [12]

    Kim J, Cox J A, Chen J, Kaertner F X 2008 Nat. Photonics 2 733Google Scholar

    [13]

    Savchenkov A A, Rubiola E, Matsko A B, Ilchenko V S, Maleki L 2008 Opt. Express 16 4130Google Scholar

    [14]

    Yao Y, Chen X F, Dai Y T, Xie S Z 2006 IEEE Photonics Technol. Lett. 18 187Google Scholar

    [15]

    Bartels A, Diddams S A, Oates C W, Wilpers G, Bergquist J C, Oskay W H, Hollberg L 2005 Opt. Lett. 30 667Google Scholar

    [16]

    Ivanov E N, McFerran J J, Diddams S A, Hollberg L 2007 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54 736Google Scholar

    [17]

    Millo J, Boudot R, Lours M, Bourgeois P Y, Luiten A N, Le Coq Y, Kersale Y, Santarelli G 2009 Opt. Lett. 34 3707Google Scholar

    [18]

    Millo J, Abgrall M, Lours M, English E M L, Jiang H, Guena J, Clairon A, Tobar M E, Bize S, Le Coq Y, Santarelli G 2009 Appl. Phys. Lett. 94 1411053

    [19]

    Diddams S A, Kirchner M, Fortier T, Braje D, Weiner A M, Hollberg L 2009 Opt. Express 17 3331Google Scholar

    [20]

    Zhang W, Xu Z, Lours M, Boudot R, Kersale Y, Santarelli G, Le Coq Y 2010 Appl. Phys. Lett. 96 2111053

    [21]

    Fortier T M, Kirchner M S, Quinlan F, Taylor J, Bergquist J C, Rosenband T, Lemke N, Ludlow A, Jiang Y, Oates C W, Diddams S A 2011 Nat. Photonics 5 425Google Scholar

    [22]

    Swann W C, Baumann E, Giorgetta F R, Newbury N R 2011 Opt. Express 19 24387Google Scholar

    [23]

    Haboucha A, Zhang W, Li T, Lours M, Luiten A N, Le Coq Y, Santarelli G 2011 Opt. Lett. 36 3654Google Scholar

    [24]

    Quinlan F, Fortier T M, Kirchner M S, Taylor J A, Thorpe M J, Lemke N, Ludlow A D, Jiang Y Y, Diddams S A 2011 Opt. Lett. 36 3260Google Scholar

    [25]

    Fortier T M, Nelson C W, Hati A, Quinlan F, Taylor J, Jiang H, Chou C W, Rosenband T, Lemke N, Ludlow A, Howe D, Oates C W, Diddams S A 2012 Appl. Phys. Lett. 100 2311113

    [26]

    Jung K, Kim J 2012 Opt. Lett. 37 2958Google Scholar

    [27]

    Meyer S A, Fortier T M, Lecomte S, Diddams S A 2013 Appl. Phys. B-Lasers Opt. 112 565Google Scholar

    [28]

    Jung K, Shin J, Kim J 2013 IEEE Photonics J. 5 55009066Google Scholar

    [29]

    Fortier T M, Quinlan F, Hati A, Nelson C, Taylor J A, Fu Y, Campbell J, Diddams S A 2013 Opt. Lett. 38 1712Google Scholar

    [30]

    Didier A, Millo J, Grop S, Dubois B, Bigler E, Rubiola E, Lacroute C, Kersale Y 2015 Appl. Optics 54 3682Google Scholar

    [31]

    Ludlow A D, Huang X, Notcutt M, Zanon-Willette T, Foreman S M, Boyd M M, Blatt S, Ye J 2007 Opt. Lett. 32 641Google Scholar

    [32]

    Millo J, Magalhaes D V, Mandache C, Le Coq Y, English E M L, Westergaard P G, Lodewyck J, Bize S, Lemonde P, Santarelli G 2009 Phys. Rev. A 79 053829Google Scholar

    [33]

    Jiang Y Y, Ludlow A D, Lemke N D, Fox R W, Sherman J A, Ma L S, Oates C W 2011 Nat. Photonics 515 8

    [34]

    Newbury N R, Washburn B R 2005 IEEE J. Quant. Electron. 41 1388Google Scholar

    [35]

    Wang H-B, Han H-N, Zhang Z-Y, Shao X-D, Zhu J-F, Wei Z-Y 2020 Chin. Phys. B 29 030601Google Scholar

    [36]

    Pang L H, Han H N, Zhao Z B, Liu W J, Wei Z Y 2016 Opt. Express 24 28994

    [37]

    Yao Y, Jiang Y, Yu H, Bi Z, Ma L 2016 Natl. Sci. Rev. 3 463Google Scholar

    [38]

    Oelker E, Hutson R B, Kennedy C J, Sonderhouse L, Bothwell T, Goban A, Kedar D, Sanner C, Robinson J M, Marti G E, Matei D G, Legero T, Giunta M, Holzwarth R, Riehle F, Sterr U, Ye J 2019 Nat. Photonics 13 714Google Scholar

    [39]

    Hudson D D, Holman K W, Jones R J, Cundiff S T, Ye J, Jones D J 2005 Opt. Lett. 30 2948Google Scholar

    [40]

    Li Z, Fu Y, Piels M, Pan H, Beling A, Bowers J E, Campbell J C 2011 Opt. Express 19 385Google Scholar

    [41]

    Quinlan F, Fortier T M, Jiang H, Hati A, Nelson C, Fu Y, Campbell J C, Diddams S A 2013 Nat. Photonics 7 290Google Scholar

    [42]

    Endo M, Shoji T D, Schibli T R 2018 IEEE J. Sel. Top. Quantum Electron. 24 1102413Google Scholar

    [43]

    韩海年, 魏志义 2016 物理 45 449Google Scholar

    Han H N, Wei Z Y 2016 Physics 45 449Google Scholar

    [44]

    Xie X P, Bouchand R, Nicolodi D, Giunta M, Hansel W, Lezius M, Joshi A, Datta S, Alexandre C, Lours M, Tremblin P A, Santarelli G, Holzwarth R, Le Coq Y 2017 Nature Photonics 11 44Google Scholar

    [45]

    Lee D, Nakamura T, Campbell J C, Diddams S A, Quinlan F Conference on Lasers and Electro-Optics Washington, DC, 2020/05/10 pSF1 G.7

    [46]

    Jiang H F, Taylor J, Quinlan F, Fortier T, Diddams S A 2011 IEEE Photonics J. 3 1004Google Scholar

    [47]

    Quinlan F, Baynes F N, Fortier T M, Zhou Q G, Cross A, Campbell J C, Diddams S A 2014 Opt. Lett. 39 1581Google Scholar

    [48]

    Walls W F, IEEE 1992 Cross-Correlation Phase Noise Measurements (New York: IEEE) pp257−261

    [49]

    Rubiola E, Giordano V 2000 Rev. Sci. Instrum. 71 Pii [s0034-6748(00)01708-1] 3085

    [50]

    Hati A, Nelson C W, Howe D A 2016 Rev. Sci. Instrum. 87 0347088

    [51]

    Ivanov E N, Tobar M E, Woode R A 1998 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45 1526Google Scholar

    [52]

    Rubiola E, Vernotte F 2010 Physics

    [53]

    Diddams S A, Bartels A, Ramond T M, Oates C W, Bize S, Curtis E A, Bergquist J C, Hollberg L 2003 IEEE J. Sel. Top. Quantum Electron. 9 1072Google Scholar

    [54]

    McFerran J J, Ivanov E N, Bartels A, Wilpers G, Oates C W, Diddams S A, Hollberg L 2005 Electronics Lett. 41 650Google Scholar

    [55]

    Lucas E, Brochard P, Bouchand R, Schilt S, Sudmeyer T, Kippenberg T J 2020 Nat. Commun. 11 3748Google Scholar

    [56]

    Ivanov E N, Tobar M E 2009 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56 263Google Scholar

    [57]

    Fluhr C, Grop S, Dubois B, Kersale Y, Rubiola E, Giordano V 2016 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 63 915Google Scholar

    [58]

    Weyers S, Gerginov V, Kazda M, Rahm J, Lipphardt B, Dobrev G, Gibble K 2018 Metrologia 55 789Google Scholar

    [59]

    Gill P 2011 Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci. 369 4109

    [60]

    Nakamura T, Davila-Rodriguez J, Leopardi H, Sherman J A, Fortier T M, Xie X J, Campbell J C, McGrew W F, Zhang X G, Hassan Y S, Nicolodi D, Beloy K, Ludlow A D, Diddams S A, Quinlan F 2020 Science 368 889Google Scholar

    [61]

    Gaeta A L, Lipson M, Kippenberg T J 2019 Nat. Photonics 13 158Google Scholar

    [62]

    Kovach A, Chen D Y, He J H, Choi H, Dogan A H, Ghasemkhani M, Taheri H, Armani A M 2020 Adv. Opt. Photonics 12 135Google Scholar

    [63]

    Wang W, Wang L, Zhang W 2020 Advanced Photonics 2 1

    [64]

    Nand N R, Hartnett J G, Ivanov E N, Santarelli G 2011 IEEE Trans. Microw. Theory Techn. 59 2978Google Scholar

    [65]

    Wolf P, Bize S, Clairon A, Luiten A N, Santarelli G, Tobar M E 2003 Phys. Rev. Lett. 90 060402Google Scholar

    [66]

    Stanwix P L, Tobar M E, Wolf P, Susli M, Locke C R, Ivanov E N, Winterflood J, van Kann F 2005 Phys. Rev. Lett. 95 0404044

    [67]

    Rioja M, Dodson R, Asaki Y, Hartnett J, Tingay S 2012 Astron. J. 144 121Google Scholar

    [68]

    Santarelli G, Audoin C, Makdissi A, Laurent P, Dick G J, Clairon A 1998 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45 887Google Scholar

    [69]

    Marin-Palomo P, Kemal J N, Karpov M, Kordts A, Pfeifle J, Pfeiffer M H P, Trocha P, Wolf S, Brasch V, Anderson M H, Rosenberger R, Vijayan K, Freude W, Kippenberg T J, Koos C 2017 Nature 546 274Google Scholar

    [70]

    Jiang Z, Huang C B, Leaird D E, Weiner A M 2007 Nat. Photonics 1 463Google Scholar

    [71]

    Deakin C, Liu Z X 2020 Opt. Lett. 45 173Google Scholar

  • [1] Zhao Hanyu, Cao Shi-Ying, Dai Shao-Yang, Yang Tao, Zuo Ya-Ni, Hu Ming-Lie. Realization of frequency calibration for 532 nm wavelength laser based on spectral enhancement technology. Acta Physica Sinica, 2024, 0(0): 0-0. doi: 10.7498/aps.73.20240106
    [2] Liu Qi-Hua, Mei Jia-Xue, Wang Jin-Dong, Zhang Fu-Min, Qu Xing-Hua. High-speed data transmission based on mode-locked optical frequency comb. Acta Physica Sinica, 2024, 73(4): 044204. doi: 10.7498/aps.73.20231384
    [3] Qin Jian. Investigation of Gaussian boson sampling under phase noise of the light source. Acta Physica Sinica, 2023, 72(5): 050302. doi: 10.7498/aps.72.20221766
    [4] Zhang Jun-Hui, Fan Li, Wu Zheng-Mao, Gou Chen-Hao, Luo Yang, Xia Guang-Qiong. Broadband and tunable optical frequency comb based on 1550 nm verticalcavity surface-emitting laser under pulsed current modulation and optical injection. Acta Physica Sinica, 2023, 72(1): 014207. doi: 10.7498/aps.72.20221709
    [5] Ding Yong-Jin, Cao Shi-Ying, Lin Bai-Ke, Wang Qiang, Han Yi, Fang Zhan-Jun. Method of adjusting carrier-envelope offset frequency based on electro-optic-crystal Mach-Zehnder interferometer. Acta Physica Sinica, 2022, 71(14): 144203. doi: 10.7498/aps.71.20220147
    [6] Liang Xu, Lin Jia-Rui, Wu Teng-Fei, Zhao Hui, Zhu Ji-Gui. Absolute distance measurement using cross correlation interferometer with a repetition rate multiplication frequency comb. Acta Physica Sinica, 2022, 71(9): 090602. doi: 10.7498/aps.71.20212073
    [7] Wang Jia-Qiang, Wu Zhi-Fang, Feng Su-Chun. Design of normal dispersion high nonlinear silica fiber and generation of flat optical frequency comb. Acta Physica Sinica, 2022, 71(23): 234209. doi: 10.7498/aps.71.20221115
    [8] Xia Wen-Ze, Liu Yang, He Ming-Zhao, Cao Shi-Ying, Yang Wei-Lei, Zhang Fu-Min, Miao Dong-Jing, Li Jian-Shuang. Numerical analyses of key parameters of nonlinear asynchronous optical sampling using dual-comb system. Acta Physica Sinica, 2021, 70(18): 180601. doi: 10.7498/aps.70.20210565
    [9] Zhao Xian-Yu, Qu Xing-Hua, Chen Jia-Wei, Zheng Ji-Hui, Wang Jin-Dong, Zhang Fu-Min. Method of measuring absolute distance based on spectral interferometry using an electro-optic comb. Acta Physica Sinica, 2020, 69(9): 090601. doi: 10.7498/aps.69.20200081
    [10] Zheng Li, Liu Han, Wang Hui-Bo, Wang Ge-Yang, Jiang Jian-Wang, Han Hai-Nian, Zhu Jiang-Feng, Wei Zhi-Yi. Generation and research progress of femtosecond optical frequency combs in extreme ultraviolet. Acta Physica Sinica, 2020, 69(22): 224203. doi: 10.7498/aps.69.20200851
    [11] Wu Yue-Long, Li Rui, Rui Yang, Jiang Hai-Feng, Wu Hai-Bin. Precise measurement of 6Li transition frequencies and hyperfine splitting. Acta Physica Sinica, 2018, 67(16): 163201. doi: 10.7498/aps.67.20181021
    [12] Jiang Hai-Feng. Progresses of ultrastable optical-cavity-based microwave source. Acta Physica Sinica, 2018, 67(16): 160602. doi: 10.7498/aps.67.20180751
    [13] Xiang Xiao, Wang Shao-Feng, Hou Fei-Yan, Quan Run-Ai, Zhai Yi-Wei, Wang Meng-Meng, Zhou Cong-Hua, Xu Guan-Jun, Dong Rui-Fang, Liu Tao, Zhang Shou-Gang. A broadband passive cavity for analyzing and filtering the noise of a femtosecond laser. Acta Physica Sinica, 2016, 65(13): 134203. doi: 10.7498/aps.65.134203
    [14] Wang Ya-Dong, Gan Xue-Tao, Ju Pei, Pang Yan, Yuan Lin-Guang, Zhao Jian-Lin. Control of topological structure in high-order optical vortices by use of noncanonical helical phase. Acta Physica Sinica, 2015, 64(3): 034204. doi: 10.7498/aps.64.034204
    [15] Wu Han-Zhong, Cao Shi-Ying, Zhang Fu-Min, Qu Xing-Hua. Spectral interferometry based absolute distance measurement using frequency comb. Acta Physica Sinica, 2015, 64(2): 020601. doi: 10.7498/aps.64.020601
    [16] Ding Xue-Li, Li Yu-Ye. Phase noise induced single or double coherence resonances of neural firing. Acta Physica Sinica, 2014, 63(24): 248701. doi: 10.7498/aps.63.248701
    [17] Wu Han-Zhong, Cao Shi-Ying, Zhang Fu-Min, Xing Shu-Jian, Qu Xing-Hua. A new method of measuring absolute distance by using optical frequency comb. Acta Physica Sinica, 2014, 63(10): 100601. doi: 10.7498/aps.63.100601
    [18] Chen Wei, Meng Zhou, Zhou Hui-Juan, Luo Hong. Nonlinear phase noise analysis of long-haul interferometric fiber sensing system. Acta Physica Sinica, 2012, 61(18): 184210. doi: 10.7498/aps.61.184210
    [19] Wang Nan, Han Hai-Nian, Li De-Hua, Wei Zhi-Yi. Spatial dispersion of pulse shaping system with high resolution based on the frequency comb. Acta Physica Sinica, 2012, 61(18): 184201. doi: 10.7498/aps.61.184201
    [20] Han Hai_Nian, Zhang Wei, Wang Peng, Li De_Hua, Wei Zhi_Yi, Shen Nai_Chen, Nie Yu_Xin, Gao Yu_Ping, Zhang Shou_Gang, Li Shi_Qun. Precise control of femtosecond Ti:sapphire laser frequency comb. Acta Physica Sinica, 2007, 56(5): 2760-2764. doi: 10.7498/aps.56.2760
Metrics
  • Abstract views:  6402
  • PDF Downloads:  354
  • Cited By: 0
Publishing process
  • Received Date:  16 November 2020
  • Accepted Date:  14 January 2021
  • Available Online:  25 June 2021
  • Published Online:  05 July 2021

/

返回文章
返回