搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用共振无源腔分析和抑制飞秒脉冲激光噪声的理论和实验研究

项晓 王少锋 侯飞雁 权润爱 翟艺伟 王盟盟 周聪华 许冠军 董瑞芳 刘涛 张首刚

利用共振无源腔分析和抑制飞秒脉冲激光噪声的理论和实验研究

项晓, 王少锋, 侯飞雁, 权润爱, 翟艺伟, 王盟盟, 周聪华, 许冠军, 董瑞芳, 刘涛, 张首刚
PDF
导出引用
导出核心图
  • 理论分析了共振无源腔对飞秒脉冲激光的强度和相位噪声的转化模型, 分析表明, 通过测量无源腔透射场或者反射场相对于输入场强度噪声的变化, 可以间接得到输入场飞秒脉冲激光的相位噪声. 在此基础上设计了精细度约为1500、自由光谱区为75 MHz 的八镜环形共振无源腔, 并测量了钛宝石锁模激光经过该共振无源腔后透射场和反射场强度噪声的变化. 实验观察到, 飞秒脉冲激光经过无源腔透射后, 强度噪声特性得到较好改善, 在探测频率2 MHz附近达到散粒噪声极限. 同时, 结合共振无源腔对激光强度和相位噪声的转化模型, 间接给出了钛宝石锁模激光的相位噪声及无源腔对相位噪声的有效抑制作用.
      通信作者: 董瑞芳, dongruifang@ntsc.ac.cn;taoliu@ntsc.ac.cn ; 刘涛, dongruifang@ntsc.ac.cn;taoliu@ntsc.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 11174282, 91336108, 11273024, 61127901)、国家自然科学基金青年科学基金(批准号:11403031)、中国科学院科技创新交叉与合作团队项目(批准号: 中科院人教字(2012)119号)、中国科学院科研装备研制项目和中组部青年拔尖人才支持计划项目(批准号: 组厅字[2013]33号)资助的课题.
    [1]

    Ma L S, Bi Z Y, Bartels A, Robertsson L, Zucco M, Windeler R S, Wilpers G, Oates C, Hollberg L, Diddams S A 2004 Science 303 1843

    [2]

    Udem T, Holzwarth R, Hnsch T W 2002 Nature 416 233

    [3]

    Steinmetz T, Wilken T, Araujo-Hauck C, Holzwarth R, Hnsch T W, Pasquini L, Manescau A, DOdorico S, Murphy M T, Kentischer T, Schmidt W, Udem T 2008 Science 321 1335

    [4]

    Hou L, Han H N, Wang W, Zhang L, Pang L H, Li D H, Wei Z Y 2015 Chin. Phys. B 24 024213

    [5]

    Bernhardt B, Ozawa A, Jacquet P, Jacquey M, Kobayashi Y, Udem T, Holzwarth R, Guelachvili G, Hnsch T W, Picqu N 2010 Nature Photon. 4 55

    [6]

    Coddington I, Swann W C, Nenadovic L, Newbury N R 2009 Nature Photon. 3 351

    [7]

    Giorgetta F R, Swann W C, Sinclair L C, Baumann E, Coddington I, Newbury N R 2013 Nature Photon. 7 434

    [8]

    Liu T Y, Zhang F M, Wu H Z, Li J S, Shi Y Q, Qu X H 2016 Acta Phys. Sin. 65 020601 (in Chinese) [刘亭洋, 张福民, 吴翰钟, 李建双, 石永强, 曲兴华 2016 物理学报 65 020601]

    [9]

    Lamine B, Fabre C, Treps N 2008 Phys. Rev. Lett. 101 123601

    [10]

    Schmeissner R, Thiel V, Jacquard C, Fabre C, Treps N 2014 Opt. Lett. 39 3603

    [11]

    Jan H, Valentina R 2005 J. O pt. Soc. Am. B 22 2338

    [12]

    Villar A S 2008 Am. J. Phys. 76 922

    [13]

    Tai Z Y, Hou F Y, Wang M M, Quan R A, Liu T, Zhang S G, Dong R F 2014 Acta Phys. Sin. 63 194203 (in Chinese) [邰朝阳, 侯飞雁, 王盟盟, 权润爱, 刘涛, 张首刚, 董瑞芳 2014 物理学报 63 194203]

    [14]

    Schmeissner R 2014 Ph. D. Dissertation (Paris: University Pierre et Marie Curie, Paris VI)

    [15]

    Schimpf D, Schmeissner R, Schulte J, Liu W, Krtner F, Treps N 2014 Proceedings of the 19th International Conference on Ultrafast Phenomena, Okinawa, Japan, July 7-11, 2014, p732

    [16]

    Drever R W P, Hall J L, Kowalski F V, Hough J, Ford G M, Munley A J, Ward H 1983 Appl. Phys. B 31 97

    [17]

    Pupeza I 2012 Power Scaling of Enhancement Cavities for Nonlinear Optics ( New York: Springer)p17

    [18]

    Zhou B K, Gao Y Z, Chen T R, Chen J H 2010 The Principle of Laser (6th Edtion) (Beijing: National Defence Industry Press)p27(in Chinese) [周炳琨, 高以智, 陈倜嵘, 陈家骅 2010 激光原理(第 6 版)(北京:国防工业出版社) 第27页]

    [19]

    Lu H G, Jiang Y Y, Bi Z Y 2006 Chinese J. Lasers 33 1675 (in Chinese) [鲁红刚, 蒋燕义, 毕志毅 2006 中国激光 33 1675]

    [20]

    Han H N, Zhang J W, Zhang Q, Zhang L, Wei Z Y 2012 Acta Phys. Sin. 61 164206 (in Chinese) [韩海年, 张金伟, 张青, 张龙, 魏志义 2012 物理学报 61 164206]

    [21]

    Siegman A E 1986 Lasers (California: University Science Books) pp955-964

    [22]

    Jones D J, Scott A, Diddams S A, Ranka J K, Stentz A, Windeler R S, Hall J L, Cundiff S T 2000 Science 288 635

  • [1]

    Ma L S, Bi Z Y, Bartels A, Robertsson L, Zucco M, Windeler R S, Wilpers G, Oates C, Hollberg L, Diddams S A 2004 Science 303 1843

    [2]

    Udem T, Holzwarth R, Hnsch T W 2002 Nature 416 233

    [3]

    Steinmetz T, Wilken T, Araujo-Hauck C, Holzwarth R, Hnsch T W, Pasquini L, Manescau A, DOdorico S, Murphy M T, Kentischer T, Schmidt W, Udem T 2008 Science 321 1335

    [4]

    Hou L, Han H N, Wang W, Zhang L, Pang L H, Li D H, Wei Z Y 2015 Chin. Phys. B 24 024213

    [5]

    Bernhardt B, Ozawa A, Jacquet P, Jacquey M, Kobayashi Y, Udem T, Holzwarth R, Guelachvili G, Hnsch T W, Picqu N 2010 Nature Photon. 4 55

    [6]

    Coddington I, Swann W C, Nenadovic L, Newbury N R 2009 Nature Photon. 3 351

    [7]

    Giorgetta F R, Swann W C, Sinclair L C, Baumann E, Coddington I, Newbury N R 2013 Nature Photon. 7 434

    [8]

    Liu T Y, Zhang F M, Wu H Z, Li J S, Shi Y Q, Qu X H 2016 Acta Phys. Sin. 65 020601 (in Chinese) [刘亭洋, 张福民, 吴翰钟, 李建双, 石永强, 曲兴华 2016 物理学报 65 020601]

    [9]

    Lamine B, Fabre C, Treps N 2008 Phys. Rev. Lett. 101 123601

    [10]

    Schmeissner R, Thiel V, Jacquard C, Fabre C, Treps N 2014 Opt. Lett. 39 3603

    [11]

    Jan H, Valentina R 2005 J. O pt. Soc. Am. B 22 2338

    [12]

    Villar A S 2008 Am. J. Phys. 76 922

    [13]

    Tai Z Y, Hou F Y, Wang M M, Quan R A, Liu T, Zhang S G, Dong R F 2014 Acta Phys. Sin. 63 194203 (in Chinese) [邰朝阳, 侯飞雁, 王盟盟, 权润爱, 刘涛, 张首刚, 董瑞芳 2014 物理学报 63 194203]

    [14]

    Schmeissner R 2014 Ph. D. Dissertation (Paris: University Pierre et Marie Curie, Paris VI)

    [15]

    Schimpf D, Schmeissner R, Schulte J, Liu W, Krtner F, Treps N 2014 Proceedings of the 19th International Conference on Ultrafast Phenomena, Okinawa, Japan, July 7-11, 2014, p732

    [16]

    Drever R W P, Hall J L, Kowalski F V, Hough J, Ford G M, Munley A J, Ward H 1983 Appl. Phys. B 31 97

    [17]

    Pupeza I 2012 Power Scaling of Enhancement Cavities for Nonlinear Optics ( New York: Springer)p17

    [18]

    Zhou B K, Gao Y Z, Chen T R, Chen J H 2010 The Principle of Laser (6th Edtion) (Beijing: National Defence Industry Press)p27(in Chinese) [周炳琨, 高以智, 陈倜嵘, 陈家骅 2010 激光原理(第 6 版)(北京:国防工业出版社) 第27页]

    [19]

    Lu H G, Jiang Y Y, Bi Z Y 2006 Chinese J. Lasers 33 1675 (in Chinese) [鲁红刚, 蒋燕义, 毕志毅 2006 中国激光 33 1675]

    [20]

    Han H N, Zhang J W, Zhang Q, Zhang L, Wei Z Y 2012 Acta Phys. Sin. 61 164206 (in Chinese) [韩海年, 张金伟, 张青, 张龙, 魏志义 2012 物理学报 61 164206]

    [21]

    Siegman A E 1986 Lasers (California: University Science Books) pp955-964

    [22]

    Jones D J, Scott A, Diddams S A, Ranka J K, Stentz A, Windeler R S, Hall J L, Cundiff S T 2000 Science 288 635

  • [1] 陈伟, 孟洲, 周会娟, 罗洪. 远程干涉型光纤传感系统的非线性相位噪声分析. 物理学报, 2012, 61(18): 184210. doi: 10.7498/aps.61.184210
    [2] 邰朝阳, 侯飞雁, 王盟盟, 权润爱, 刘涛, 张首刚, 董瑞芳. 光纤激光经过模清洁器后的强度噪声分析. 物理学报, 2014, 63(19): 194203. doi: 10.7498/aps.63.194203
    [3] 丁学利, 李玉叶. 相位噪声诱发神经放电的单次或两次相干共振. 物理学报, 2014, 63(24): 248701. doi: 10.7498/aps.63.248701
    [4] 聂丹丹, 冯晋霞, 戚蒙, 李渊骥, 张宽收. 基于光学参量振荡器的可调谐红外激光的强度噪声特性. 物理学报, 2020, 69(9): 094205. doi: 10.7498/aps.69.20191952
    [5] 刘 军, 陈晓伟, 刘建胜, 冷雨欣, 朱 毅, 戴 君, 李儒新, 徐至展. 负啁啾高强度飞秒脉冲在正常色散材料中传输特性研究. 物理学报, 2006, 55(4): 1821-1826. doi: 10.7498/aps.55.1821
    [6] 季忠刚, 王占新, 刘建胜, 李儒新. 激光波前相位因子对飞秒脉冲激光成丝动力学的影响. 物理学报, 2010, 59(11): 7885-7891. doi: 10.7498/aps.59.7885
    [7] 王鸿飞, 杨辉, 邱阳, 腾浩, 张军, 苍宇, 吕铁铮, 王兆华, 魏志义, 张杰. 4.5MW小型化全固态腔倒空飞秒掺钛蓝宝石激光器. 物理学报, 2001, 50(10): 1930-1934. doi: 10.7498/aps.50.1930
    [8] 赵研英, 韩海年, 滕浩, 魏志义. 采用多通腔望远镜谐振腔结构的10MHz重复频率飞秒钛宝石激光器特性研究. 物理学报, 2009, 58(3): 1709-1714. doi: 10.7498/aps.58.1709
    [9] 刘四平, 张玉驰, 张鹏飞, 李刚, 王军民, 张天才. 减反膜外腔半导体激光器特性的研究. 物理学报, 2009, 58(1): 285-289. doi: 10.7498/aps.58.285.1
    [10] 刘文军, 任守田, 曲士良. 在空间-时间域测量飞秒脉冲. 物理学报, 2010, 59(5): 3286-3289. doi: 10.7498/aps.59.3286
    [11] 王亚东, 甘雪涛, 俱沛, 庞燕, 袁林光, 赵建林. 利用非传统螺旋相位调控高阶涡旋光束的拓扑结构. 物理学报, 2015, 64(3): 034204. doi: 10.7498/aps.64.034204
    [12] 王清月, 柴 路, 谢旭东. 频域标定飞秒脉冲干涉自相关迹及钛宝石振荡器实时啁啾监测. 物理学报, 2005, 54(8): 3657-3660. doi: 10.7498/aps.54.3657
    [13] 滕树云, 程传福, 刘桂媛, 宋洪胜, 刘曼. 锥形镀膜光纤探针中飞秒激光脉冲的传输. 物理学报, 2009, 58(11): 7613-7620. doi: 10.7498/aps.58.7613
    [14] 邓 莉, 廖 睿, 刘叶新, 寿 倩, 文锦辉, 林位株. 亚10飞秒脉冲的诊断与压缩. 物理学报, 2003, 52(8): 1938-1942. doi: 10.7498/aps.52.1938
    [15] 张玉驰, 王晓勇, 李 刚, 王军民, 张天才. 自由运转半导体激光器边模间的强度关联. 物理学报, 2007, 56(4): 2202-2206. doi: 10.7498/aps.56.2202
    [16] 黄杭东, 滕浩, 詹敏杰, 许思源, 黄沛, 朱江峰, 魏志义. 基于瞬态光栅频率分辨光学开关法测量飞秒脉冲的研究. 物理学报, 2019, 68(7): 070602. doi: 10.7498/aps.68.20190165
    [17] 韩祥临, 赵振江, 程荣军, 莫嘉琪. 飞秒脉冲激光对纳米金属薄膜传导模型的解. 物理学报, 2013, 62(11): 110202. doi: 10.7498/aps.62.110202
    [18] 王清月, 王 专, 柴 路, 张伟力, 谢旭东. 超宽光谱掺钛蓝宝石飞秒激光器时域频域特性的实验研究. 物理学报, 2005, 54(7): 3159-3163. doi: 10.7498/aps.54.3159
    [19] 詹敏杰, 周斌斌, 张 炜, 魏志义. Gires-Tournois干涉镜补偿色散的自启动飞秒Cr4+:YAG激光器实验研究. 物理学报, 2008, 57(3): 1742-1745. doi: 10.7498/aps.57.1742
    [20] 刘文军, 曹武刚, 郭金鑫, 刘海磊, 曲士良. 时域飞秒散斑的特性与测量. 物理学报, 2008, 57(4): 2192-2198. doi: 10.7498/aps.57.2192
  • 引用本文:
    Citation:
计量
  • 文章访问数:  792
  • PDF下载量:  162
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-27
  • 修回日期:  2016-04-15
  • 刊出日期:  2016-07-05

利用共振无源腔分析和抑制飞秒脉冲激光噪声的理论和实验研究

    基金项目: 

    国家自然科学基金(批准号: 11174282, 91336108, 11273024, 61127901)、国家自然科学基金青年科学基金(批准号:11403031)、中国科学院科技创新交叉与合作团队项目(批准号: 中科院人教字(2012)119号)、中国科学院科研装备研制项目和中组部青年拔尖人才支持计划项目(批准号: 组厅字[2013]33号)资助的课题.

摘要: 理论分析了共振无源腔对飞秒脉冲激光的强度和相位噪声的转化模型, 分析表明, 通过测量无源腔透射场或者反射场相对于输入场强度噪声的变化, 可以间接得到输入场飞秒脉冲激光的相位噪声. 在此基础上设计了精细度约为1500、自由光谱区为75 MHz 的八镜环形共振无源腔, 并测量了钛宝石锁模激光经过该共振无源腔后透射场和反射场强度噪声的变化. 实验观察到, 飞秒脉冲激光经过无源腔透射后, 强度噪声特性得到较好改善, 在探测频率2 MHz附近达到散粒噪声极限. 同时, 结合共振无源腔对激光强度和相位噪声的转化模型, 间接给出了钛宝石锁模激光的相位噪声及无源腔对相位噪声的有效抑制作用.

English Abstract

参考文献 (22)

目录

    /

    返回文章
    返回