搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于光谱增强技术实现对532 nm波长激光频率标定

赵瀚宇 曹士英 戴少阳 杨涛 左娅妮 胡明列

引用本文:
Citation:

基于光谱增强技术实现对532 nm波长激光频率标定

赵瀚宇, 曹士英, 戴少阳, 杨涛, 左娅妮, 胡明列

Realization of frequency calibration for 532 nm wavelength laser based on spectral enhancement technology

Zhao Hanyu, Cao Shi-Ying, Dai Shao-Yang, Yang Tao, Zuo Ya-Ni, Hu Ming-Lie
PDF
导出引用
  • 碘稳频532 nm Nd:YAG激光器在复现长度单位“米(m)”、绝对重力测量、引力波探测、精密光谱学、长度计量等领域有着重要应用,对其进行频率测量和标定对于激光器的性能评价具有重要意义。本文采用自行研制的掺Er光纤光学频率梳作为光源,对其扩谱后的1 μm波段进行光谱增强并结合倍频晶体将光学频率梳输出的1.5μm波段光脉冲扩展到532 nm波段。其中掺Er光纤光学频率梳输出功率20 mW,首先经过掺Er光纤放大器将功率提到370 mW,经过脉冲压缩后脉冲宽度为45.7 fs,此后经过高非线性光纤扩谱实现光谱覆盖至1 μm,输出功率为180 mW。扩谱后的1μm波段激光经过掺Yb光纤放大器放大至601 mW,经过压缩后脉冲宽度为84.6 fs,压缩后功率为420 mW。采用MgO: PPLN晶体对压缩后激光进行倍频得到155 mW的532 nm激光,倍频效率为36%。利用该系统分别对碘稳频532 nm Nd:YAG激光器输出的基频光1064 nm和倍频光532 nm进行拍频获得了优于40 dB信噪比的拍频信号,后续进行了超过10小时的连续测量,测量结果与国际推荐值保持一致。
    The iodine-stabilized 532 nm Nd:YAG laser plays an important role in the realization of the unit of length "meter (m)", absolute gravimeter, gravitational waves detaction, precision spectroscopy, distance metrology, and so on. Absolute frequency measurement and calibration of the laser are of great significance for the performance evaluation of the laser. The previous method of extending the erbium-doped fiber optical frequency comb (Er-FOFC) to the wavelength of 532nm was to first amplify the seed light, then frequency-doubled with a periodic polarization lithium niobate crystal, and finally couple it into a photonic crystal fiber to expand the spectrum to the 532nm band. With such technique, the a signal-to-noise ratio (SNR) of the beat signal between the iodine-stabilized 532 nm Nd:YAG laser and the Er-FOFC is approximately 30 dB. Moreover, the SNR of the beat signal was unstable, resulting in the errors in frequency measurement with a counter. This is not conducive to the long-term frequency measurement of the iodine-stabilized 532 nm Nd:YAG laser. Therefore, a method that can obtain both high SNR and long-term stable beat signals is required. In this paper, an Er-FOFC was developed. The spectral enhancement of its broadened at 1 μm was carried out, and then expanded to the wavelength at 532 nm with a frequency-doubling crystal. The output power of the Er-FOFC was 20 mW, which was first amplified to 370 mW by an Er-fiber amplifier and then compressed to a pulse width of 45.7 fs. Subsequently, the spectrum was extended to cover the wavelength at 1 μm with a highly nonlinear fiber, resulting in an output power of 180 mW. The broadened spectrum at 1 μm was amplified to 601 mW by a Yb-fiber amplifier, and the compressed power increasing to 420 mW. Using an MgO: PPLN crystal, the compressed laser was frequency-doubled to produce a 532 nm laser output with 155 mW power and a doubling efficiency of 36%. Utilizing this system, the absolute frequency measurements were conducted on the fundamental frequency light at 1064 nm and the doubled frequency light at 532 nm from the iodine-stabilized 532 nm Nd:YAG laser, yielding a beat signal with a SNR of greater than 40 dB. This SNR represents a 13 dB improvement compared with the results obtained when an amplified seed light is frequency-doubled using PPLN and then coupled into a PCF for direct spectral broadening to cover the 532 nm band. Over several days of continuous monitoring, there was no observed risk of SNR degradation. Moreover, subsequent frequency measurements were carried out continuously for over several hours, with the results maintaining consistency with recommended values.
  • [1]

    Quinn T J 2003Metrologia 40 103

    [2]

    Niebauer T M, Sasagawa G S, Faller J E, Hilt R and Klopping F 1995Metrologia 32 159

    [3]

    Qian J, Wang G, Wu K and Wang L J 2018Meas. Sci. Technol. 29 025005

    [4]

    Wang G, Hu H, Wu K and Wang L J 2017Meas. Sci. Technol. 28 035001

    [5]

    Kolkowitz S, Pikovski I, Langellier N, Lukin M.D, Walsworth R L and Ye J 2016Phys. Rev. D 94 124043

    [6]

    Meylahn F, Knust N and Willke B 2022Phys. Rev. D 105 122004

    [7]

    Cai R G, Cao Z J, Guo Z K, Wang S J and Tao Yang 2017Nat Rev Phys 4 687

    [8]

    Bailes M, Berger B K, Brady P R, Branchesi M, Danzmann K, Evans M, Holley-Bockelmann K, Iyer B R, Kajita T, Katsanevas S, Kramer M, Lazzarini A, Lehner L, Losurdo G, Lück H, McClelland D E, McLaughlin M A, Punturo M, Ransom S, Raychaudhury S, Reitze D H, Ricci F, Rowan S, Saito Y, Sanders G H, Sathyaprakash B S, Schutz B F, Sesana A, Shinkai H, Siemens X, Shoemaker D H, Thorpe J, J F J van den Brand and Vitale S 2021Nat Rev Phys 3 344

    [9]

    Hong F L, Ishikawa J, Sugiyama K, Onae A, Matsumoto H, Ye J, Hall J L 2003IEEE Trans Instrum Meas 52 240

    [10]

    Okhapkin M V, Skvortsov M N, Belkin A M, Kvashnin N L, Bagayev S N 2002Opt.Commun 203 359

    [11]

    https://www.bipm.org/documents/20126/41549560/M-e-P_I2_633.pdf/c4c25f25-ae65-e05d-402a-9bfc84c715c3[2024-02-16]

    [12]

    https://www.bipm.org/documents/20126/41549514/M-e-P_I2_532.pdf/16c7ddb8-4854-9f16-34cc-5bcebe299ce8[2024-02-16]

    [13]

    Lin B K, Cao S Y, Zhao Y, Li Y, Wang Q, Lin Y, Cao J P, Zang E J, Fang Z J, Li T C Chin J Lasers 201441 0902002(in Chinese) [林百科, 曹士英, 赵阳, 李烨, 王强, 林弋戈, 曹建平, 臧二军, 方占军, 李天初2014中国激光41 0902002]

    [14]

    Wu X J, Li Y, Wei H Y, Zhang J T Laser Optoelectron Prog 201249 030001(in Chinese)[吴学健, 李岩尉, 昊赟, 张继涛2012激光与光电子学进展49 030001]

    [15]

    Ma L S, Zucco M, Picard S, Robertsson L, Windeler R S 2003IEEE J Sel Top Quantum Electron 9 1066

    [16]

    Udem T H, Reichert J, Holzwarth R and Hänsch T W 2000Phys Rev Lett 82 3568

    [17]

    Jones D J, Diddams S A, Ranka J K, Stenz A, Windler R S, Hall J L, Cundiff S T 2000Science 288 635

    [18]

    Ranka J K, Windler R S, Stenz A J 2000Opt Lett 25 25

    [19]

    Rovera G D, Ducos F, Zondy J-J, Acef O, Wallerand J-P, Knight J C and Russell P St J 2002Meas Sci Technol 13 918

    [20]

    Fang Z J, Wang Q, Wang M M, Meng F, Lin B K, Li T C 2007Acta PhysSin56(in Chinese)[ 方占军, 王强, 王民明, 孟飞, 林百科, 李天初2007物理学报56 5684]

    [21]

    Kobayashi T, Akamatsu D, Hosaka K, Inaba H, Okubo S, Tanabe T, Yasuda M, Onae A, Hong F L 2015Conference on Lasers and Electro-Optics San Jose, CA, USA, May 10-15, 2015 p1

    [22]

    Cao S Y, Meng F, Lin B K, Fang Z J, Li T C 2011Chin J Lasers 38 231(in Chinese)[曹士英, 孟飞, 林百科, 方占军, 李天初2011中国激光38 231]

    [23]

    Cao S Y, Cai Y, Wang G Z, Meng F, Zhang Z G, Fang Z J, Li T C 2011Acta PhysSin60 094208(in Chinese)[曹士英, 蔡岳, 王贵重, 孟飞, 张志刚, 方占军, 李天初2011物理学报60 094208]

    [24]

    Liu H, Cao S Y, Meng F Lin B K, Fang Z J 2015Acta PhysSin 64 094204(in Chinese)[刘欢, 曹士英, 孟飞, 林百科, 方占军2015物理学报64 094204]

    [25]

    Liu H, Cao S Y, Yu Y, Lin B K, Lu W P and Fang Z J 2017Meas Sci Technol 28 105202

    [26]

    Wang S F, Wu T F, Cao S Y, Xia C Q, Han J B, Zhao C B 2017Meas Tech 37 8(in Chinese)[王少峰, 武腾飞, 曹士英, 夏传青, 韩继博, 赵春播2017计测技术37 8]

    [27]

    S. Cao, B. Lin, X. Yuan, and Z. Fang. Tunable Er-doped fiber optical frequency comb with a repetition rate adjustment larger than 1.6 MHz. 2021Opt. Commun 478 126376

  • [1] 张竣珲, 樊利, 吴正茂, 苟宸豪, 骆阳, 夏光琼. 基于光注入下脉冲电流调制1550 nm 垂直腔面发射激光器获取宽带可调谐光学频率梳. 物理学报, doi: 10.7498/aps.72.20221709
    [2] 丁永今, 曹士英, 林百科, 王强, 韩羿, 方占军. 基于电光晶体马赫-曾德干涉仪的载波包络偏移频率调节方法. 物理学报, doi: 10.7498/aps.71.20220147
    [3] 王佳强, 吴志芳, 冯素春. 正常色散高非线性石英光纤优化设计及平坦光频率梳产生. 物理学报, doi: 10.7498/aps.71.20221115
    [4] 梁旭, 林嘉睿, 吴腾飞, 赵晖, 邾继贵. 重复频率倍增光频梳时域互相关绝对测距. 物理学报, doi: 10.7498/aps.71.20212073
    [5] 夏文泽, 刘洋, 赫明钊, 曹士英, 杨伟雷, 张福民, 缪东晶, 李建双. 双光梳非线性异步光学采样测距中关键参数的数值分析. 物理学报, doi: 10.7498/aps.70.20210565
    [6] 邵晓东, 韩海年, 魏志义. 基于光学频率梳的超低噪声微波频率产生. 物理学报, doi: 10.7498/aps.70.20201925
    [7] 郑立, 刘寒, 汪会波, 王阁阳, 蒋建旺, 韩海年, 朱江峰, 魏志义. 极紫外飞秒光学频率梳的产生与研究进展. 物理学报, doi: 10.7498/aps.69.20200851
    [8] 赵显宇, 曲兴华, 陈嘉伟, 郑继辉, 王金栋, 张福民. 一种基于电光调制光频梳光谱干涉的绝对测距方法. 物理学报, doi: 10.7498/aps.69.20200081
    [9] 朱旭鹏, 石惠民, 张轼, 陈智全, 郑梦洁, 王雅思, 薛书文, 张军, 段辉高. 表面等离激元耦合体系及其光谱增强应用. 物理学报, doi: 10.7498/aps.68.20190782
    [10] 陈嘉伟, 王金栋, 曲兴华, 张福民. 光频梳频域干涉测距主要参数分析及一种改进的数据处理方法. 物理学报, doi: 10.7498/aps.68.20190836
    [11] 郑培超, 李晓娟, 王金梅, 郑爽, 赵怀冬. 再加热双脉冲激光诱导击穿光谱技术对黄连中Cu和Pb的定量分析. 物理学报, doi: 10.7498/aps.68.20190148
    [12] 武跃龙, 李睿, 芮扬, 姜海峰, 武海斌. 6Li原子跃迁频率和超精细分裂的精密测量. 物理学报, doi: 10.7498/aps.67.20181021
    [13] 张伟鹏, 杨宏雷, 陈馨怡, 尉昊赟, 李岩. 光频链接的双光梳气体吸收光谱测量. 物理学报, doi: 10.7498/aps.67.20180150
    [14] 李百慧, 高勋, 宋超, 林景全. 磁空混合约束激光诱导Cu等离子体光谱特性. 物理学报, doi: 10.7498/aps.65.235201
    [15] 吴翰钟, 曹士英, 张福民, 曲兴华. 光学频率梳基于光谱干涉实现绝对距离测量. 物理学报, doi: 10.7498/aps.64.020601
    [16] 李丞, 高勋, 刘潞, 林景全. 磁场约束下激光诱导等离子体光谱强度演化研究. 物理学报, doi: 10.7498/aps.63.145203
    [17] 吴翰钟, 曹士英, 张福民, 邢书剑, 曲兴华. 一种光学频率梳绝对测距的新方法. 物理学报, doi: 10.7498/aps.63.100601
    [18] 杜闯, 高勋, 邵妍, 宋晓伟, 赵振明, 郝作强, 林景全. 土壤中重金属元素的双脉冲激光诱导击穿光谱研究. 物理学报, doi: 10.7498/aps.62.045202
    [19] 王楠, 韩海年, 李德华, 魏志义. 光学频率梳空间光谱分辨精度研究. 物理学报, doi: 10.7498/aps.61.184201
    [20] 韩海年, 张 炜, 王 鹏, 李德华, 魏志义, 沈乃澂, 聂玉昕, 高玉平, 张首刚, 李师群. 飞秒钛宝石光学频率梳的精密锁定. 物理学报, doi: 10.7498/aps.56.2760
计量
  • 文章访问数:  237
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 上网日期:  2024-03-04

/

返回文章
返回