搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光频链接的双光梳气体吸收光谱测量

张伟鹏 杨宏雷 陈馨怡 尉昊赟 李岩

光频链接的双光梳气体吸收光谱测量

张伟鹏, 杨宏雷, 陈馨怡, 尉昊赟, 李岩
PDF
导出引用
  • 双光梳光谱技术以其无运动部件快速采样、高分辨率探测等优势成为宽带激光光谱测量中的热点技术.但受限于常用微波锁定双光梳光源间的噪声特性,双光梳光谱技术仍难以发挥其探测潜能.本文报道一种光频域互相链接的双光梳光谱探测方案.通过将两台激光器的偏置频率同时锁定到一个窄线宽激光器上,既免去了结构复杂且成本高昂的非线性自参考系统,又将双光梳间的共同参考点设置到了光频范围,抑制了双光梳光谱采样抖动,实现光谱探测性能的提升.13C2H2的1+3 P支光谱数据测量数据分析结果表明:谱线位置与文献结果符合良好,光谱分辨率为0.086 cm-1,信噪比 200:1(62.5 ms,100幅平均),相应的秒均噪声等效吸收系数达6.0106 cm-1Hz-1/2.该工作为双光梳光谱测量的实际应用提供了一种高精度、低成本、易于实现的解决方案.
      通信作者: 尉昊赟, luckiwei@mail.tsinghua.edu.cn
    • 基金项目: 国家重大科学仪器设备开发专项(批准号:2013YQ47067502)和国家自然科学基金(批准号:61775114)资助的课题.
    [1]

    Newbury N 2011 Nat. Photon. 5 186

    [2]

    Coddington I, Swann W, Newbury N 2009 Nat. Photon. 3 351

    [3]

    Giorgetta F, Swann W, Sinclair S, Baumann E, Conddington I, Newbury N 2013 Nat. Photon. 7 434

    [4]

    Lomsadze B, Cundiff S 2017 Sci. Rep. 7 14018

    [5]

    Meng F, Cao S Y, Cai Y, Wang G Z, Cao J P, Li T C, Fang Z J 2011 Acta Phys. Sin. 60 100601 (in Chinese) [孟飞, 曹士英, 蔡岳, 王贵重, 曹建平, 李天初, 方占军 2011 物理学报 60 100601]

    [6]

    Coddington I, Swan W, Newbury N 2008 Phys. Rev. Lett. 100 013902

    [7]

    Bernhardt B, Ozawa A, Jacquet P, Jacquey M, Kobayashi Y, Udem T, Holzwarth R, Guelachvili G, Hnsch T, Picqu N 2009 Nat. Photon. 4 55

    [8]

    Baumann E, Giorgetta F, Swann W, Zolot A, Coddington I, Newbury N 2011 Phys. Rev. A 84 062513

    [9]

    Ideguchi T, Poisson A, Guelachvili G, Picqu N, Hnsch T 2014 Nat. Commun. 5 3375

    [10]

    Cassinerio M, Gambetta A, Coluccelli N, Laporta P, Galzerano G 2014 Appl. Phys. Lett. 104 231102

    [11]

    Okubo S, Iwakuni K, Inaba H, Hosaka K, Onae A, Sasada H, Hong F 2015 Appl. Phys. Express 8 082402

    [12]

    Coddington I, Newbury N, Swann W 2016 Optica 3 414

    [13]

    Yang H, Wei H, Zhang H, Chen K, Li Y, Smolski V, Vodopyanov K 2016 Appl. Opt. 55 6321

    [14]

    Yang H L, Wei H Y, Li Y, Ren L B, Zhang H Y 2014 Spectroscopy and Spectral Analysis 34 335 (in Chinese) [杨宏雷, 尉昊赟, 李岩, 任利兵, 张弘元 2014 光谱学与光谱分析 34 335]

    [15]

    Yang H, Wu X, Zhang H, Zhao S, Yang L, Wei H, Li Y 2016 Appl. Opt. 55 D29

    [16]

    Yang H, Wei H, Li Y 2016 Chin. Phys. B 25 044207

    [17]

    Thorpe J, Ye J 2008 Appl. Phys. B 91 397

    [18]

    Adler F, Thorpe J, Kevin C 2010 Ann. Rev. Anal. Chem. 3 175

    [19]

    Foltynowicz A, Masłowski P, Fleisher A, Bjork B, Ye J 2012 Appl. Phys. B 110 163

    [20]

    Khodabakhsh A, Alrahman C, Foltynowicz A 2014 Opt. Lett. 39 5034

    [21]

    Hodges T, Layer P, Miller W 2004 Rev. Sci. Instrum. 75 849

    [22]

    Mondelain D, Sala T, Kassi S, Romanini D, Marangoni M, Campargue A 2015 J. Quant. Spectrosc. Radat. Transfer. 154 35

    [23]

    Ball S, Povey I, Norton E, Jones R 2011 Chem. Phys. Lett. 342 113

    [24]

    Thorpe M, Moll K, Jones R, Safdi B, Ye J 2006 Science 311 1595

    [25]

    Edwards C, Margolis H, Barwood G, Lea S, Gill P, Rowley W 2005 Appl. Phys. B 80 977

    [26]

    Jones D, Diddams S, Ranka J, Stentz A, Windeler R, Hall J, Cundiff S 2000 Science 288 635

    [27]

    Foltynowicz A, Masłowski P, Ban T, Adler F, Cossel K, Briles T, Ye J 2011 Faraday Discuss. 150 23

    [28]

    Rubiola E 2009 Phase Noise and Frequency Stability in Oscillators (Cambridge: Cambridge University Press) pp29-30

  • [1]

    Newbury N 2011 Nat. Photon. 5 186

    [2]

    Coddington I, Swann W, Newbury N 2009 Nat. Photon. 3 351

    [3]

    Giorgetta F, Swann W, Sinclair S, Baumann E, Conddington I, Newbury N 2013 Nat. Photon. 7 434

    [4]

    Lomsadze B, Cundiff S 2017 Sci. Rep. 7 14018

    [5]

    Meng F, Cao S Y, Cai Y, Wang G Z, Cao J P, Li T C, Fang Z J 2011 Acta Phys. Sin. 60 100601 (in Chinese) [孟飞, 曹士英, 蔡岳, 王贵重, 曹建平, 李天初, 方占军 2011 物理学报 60 100601]

    [6]

    Coddington I, Swan W, Newbury N 2008 Phys. Rev. Lett. 100 013902

    [7]

    Bernhardt B, Ozawa A, Jacquet P, Jacquey M, Kobayashi Y, Udem T, Holzwarth R, Guelachvili G, Hnsch T, Picqu N 2009 Nat. Photon. 4 55

    [8]

    Baumann E, Giorgetta F, Swann W, Zolot A, Coddington I, Newbury N 2011 Phys. Rev. A 84 062513

    [9]

    Ideguchi T, Poisson A, Guelachvili G, Picqu N, Hnsch T 2014 Nat. Commun. 5 3375

    [10]

    Cassinerio M, Gambetta A, Coluccelli N, Laporta P, Galzerano G 2014 Appl. Phys. Lett. 104 231102

    [11]

    Okubo S, Iwakuni K, Inaba H, Hosaka K, Onae A, Sasada H, Hong F 2015 Appl. Phys. Express 8 082402

    [12]

    Coddington I, Newbury N, Swann W 2016 Optica 3 414

    [13]

    Yang H, Wei H, Zhang H, Chen K, Li Y, Smolski V, Vodopyanov K 2016 Appl. Opt. 55 6321

    [14]

    Yang H L, Wei H Y, Li Y, Ren L B, Zhang H Y 2014 Spectroscopy and Spectral Analysis 34 335 (in Chinese) [杨宏雷, 尉昊赟, 李岩, 任利兵, 张弘元 2014 光谱学与光谱分析 34 335]

    [15]

    Yang H, Wu X, Zhang H, Zhao S, Yang L, Wei H, Li Y 2016 Appl. Opt. 55 D29

    [16]

    Yang H, Wei H, Li Y 2016 Chin. Phys. B 25 044207

    [17]

    Thorpe J, Ye J 2008 Appl. Phys. B 91 397

    [18]

    Adler F, Thorpe J, Kevin C 2010 Ann. Rev. Anal. Chem. 3 175

    [19]

    Foltynowicz A, Masłowski P, Fleisher A, Bjork B, Ye J 2012 Appl. Phys. B 110 163

    [20]

    Khodabakhsh A, Alrahman C, Foltynowicz A 2014 Opt. Lett. 39 5034

    [21]

    Hodges T, Layer P, Miller W 2004 Rev. Sci. Instrum. 75 849

    [22]

    Mondelain D, Sala T, Kassi S, Romanini D, Marangoni M, Campargue A 2015 J. Quant. Spectrosc. Radat. Transfer. 154 35

    [23]

    Ball S, Povey I, Norton E, Jones R 2011 Chem. Phys. Lett. 342 113

    [24]

    Thorpe M, Moll K, Jones R, Safdi B, Ye J 2006 Science 311 1595

    [25]

    Edwards C, Margolis H, Barwood G, Lea S, Gill P, Rowley W 2005 Appl. Phys. B 80 977

    [26]

    Jones D, Diddams S, Ranka J, Stentz A, Windeler R, Hall J, Cundiff S 2000 Science 288 635

    [27]

    Foltynowicz A, Masłowski P, Ban T, Adler F, Cossel K, Briles T, Ye J 2011 Faraday Discuss. 150 23

    [28]

    Rubiola E 2009 Phase Noise and Frequency Stability in Oscillators (Cambridge: Cambridge University Press) pp29-30

  • 引用本文:
    Citation:
计量
  • 文章访问数:  2087
  • PDF下载量:  160
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-20
  • 修回日期:  2018-02-08
  • 刊出日期:  2018-05-05

光频链接的双光梳气体吸收光谱测量

  • 1. 清华大学精密仪器系, 精密测试技术及仪器国家重点实验室, 北京 100084;
  • 2. 北京无线电计量测试研究所, 计量与校准技术重点实验室, 北京 100854
  • 通信作者: 尉昊赟, luckiwei@mail.tsinghua.edu.cn
    基金项目: 

    国家重大科学仪器设备开发专项(批准号:2013YQ47067502)和国家自然科学基金(批准号:61775114)资助的课题.

摘要: 双光梳光谱技术以其无运动部件快速采样、高分辨率探测等优势成为宽带激光光谱测量中的热点技术.但受限于常用微波锁定双光梳光源间的噪声特性,双光梳光谱技术仍难以发挥其探测潜能.本文报道一种光频域互相链接的双光梳光谱探测方案.通过将两台激光器的偏置频率同时锁定到一个窄线宽激光器上,既免去了结构复杂且成本高昂的非线性自参考系统,又将双光梳间的共同参考点设置到了光频范围,抑制了双光梳光谱采样抖动,实现光谱探测性能的提升.13C2H2的1+3 P支光谱数据测量数据分析结果表明:谱线位置与文献结果符合良好,光谱分辨率为0.086 cm-1,信噪比 200:1(62.5 ms,100幅平均),相应的秒均噪声等效吸收系数达6.0106 cm-1Hz-1/2.该工作为双光梳光谱测量的实际应用提供了一种高精度、低成本、易于实现的解决方案.

English Abstract

参考文献 (28)

目录

    /

    返回文章
    返回