搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Julia分形的多涡卷忆阻混沌系统

肖利全 段书凯 王丽丹

基于Julia分形的多涡卷忆阻混沌系统

肖利全, 段书凯, 王丽丹
PDF
导出引用
  • 忆阻器作为一种非线性电子元件,能用作混沌系统中的非线性项,从而提高系统的复杂度.分形与混沌是密切相连的,分别对两者的研究都已成熟,却鲜有将分形过程应用到混沌系统中,以产生丰富的混沌吸引子.为了探索将分形与混沌系统相结合的可能性,本文首先提出了一个新的忆阻混沌系统,并从对称性、耗散性、平衡点稳定性、功率谱、Lyapunov指数和分数维等方面探讨了系统的动力学特性;紧接着,把经典的Julia分形过程应用到该忆阻混沌系统中,产生了新的混沌吸引子,并将几种由Julia分形衍生的变形Julia分形过程应用于文中提出的忆阻混沌系统,获得了丰富的混沌吸引子;最后,讨论了分形过程中的复常数对系统的影响.从仿真结果可以看出,分形过程与混沌系统的结合能产生丰富的多涡卷混沌吸引子.这不仅为产生多涡卷混沌吸引子提供了一种新方法,还弥补了使用功能函数方法造成混沌系统不光滑的不足.
      通信作者: 段书凯, duansk@swu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:61372139,61571372,61672436)、中央高校基本科研业务费专项资金(批准号:XDJK2016A001,XDJK2014A009)和重庆市基础科学与前沿技术研究(批准号:cstc2017jcyjBX0050)资助的课题.
    [1]

    Chua L O 1971 IEEE Trans. Circ. Theor. 18 507

    [2]

    Strukov D B, Snider G S, Stewart D R, Williams R S 2008 Nature 453 80

    [3]

    Zhou J, Huang D 2012 Chin. Phys. B 21 048401

    [4]

    Wang L D, Li H F, Duan S K, Huang T W, Wang H M 2016 Neurccomputing 171 23

    [5]

    Min G Q, Wang L D, Duan S K 2015 Acta Phys. Sin. 64 210507 (in Chinese) [闵国旗, 王丽丹, 段书凯 2015 物理学报 64 210507]

    [6]

    Mandelbrot B B 1967 Science 156 636

    [7]

    Mandelbrot B B 1975 Fractals: Form, Chance and Dimension (San Francisco: WH Freeman and Company) pp35-37

    [8]

    Li H Q, Wang F Q 1999 Fractal Theory and Its Application in Molecular Science (Beijing: Science Press) p33 (in Chinese) [李后强, 汪富泉 1999分形理论及其在分子科学中的应用(北京:科学出版社) 第33页]

    [9]

    Lorenz E N 1963 J. Atmos. Sci. 20 130

    [10]

    Chua L O, Komuro M, Matsumoto T 1986 IEEE Trans. Circ. Syst. 33 1072

    [11]

    Chen G R 1999 Int. J. Bifurcat. Chaos 9 1465

    [12]

    Wang L D, Drakakis E, Duan S K, He P F, Liao X F 2012 Int. J. Bifurcat. Chaos 22 1250205

    [13]

    Muthuswamy B, Kokate P P 2009 IETE Tech. Rev. 26 417

    [14]

    Zhou Z W, Su Y L, Wang W D, Yan Y 2017 J. Petrol. Explor. Prod. Technol. 7 487

    [15]

    Bouallegue K 2015 Int. J. Bifurcat. Chaos 25 1530002

    [16]

    Chua L O, Roska T 1993 IEEE Trans. Circ. Syst. I 40 147

    [17]

    Yalcin M, Suykens J, Vandewalle J, Ozoguz S 2002 Int. J. Bifurcat. Chaos 12 23

    [18]

    Tang W K S, Zhong G Q, Chen G, Man K F 2001 IEEE Trans. Circ. Syst. I 48 1369

    [19]

    Zarei A 2015 Nonlinear Dyn. 81 585

    [20]

    More C, Vlad R, Chauveau E 2010 Nonlinear Dyn. 59 45

    [21]

    Huan S M, Li Q D, Yang X S 2012 Nonlinear Dyn. 69 1915

    [22]

    L J H, Yu X H, Chen G R 2003 IEEE Trans. Circ. Syst. I 50 198

    [23]

    Yalcin M, Suykens J, van de Walle J 2005 Chaos Modeling and Control Systems Design (Singapore: World Scientific) p59

    [24]

    L J H, Chen G R, Yu X H, Leung H 2004 IEEE Trans. Circ. Syst. I 51 2476

    [25]

    L J H, Yu S M, Leung H, Chen G R 2006 IEEE Trans. Circ. Syst. I 53 149

  • [1]

    Chua L O 1971 IEEE Trans. Circ. Theor. 18 507

    [2]

    Strukov D B, Snider G S, Stewart D R, Williams R S 2008 Nature 453 80

    [3]

    Zhou J, Huang D 2012 Chin. Phys. B 21 048401

    [4]

    Wang L D, Li H F, Duan S K, Huang T W, Wang H M 2016 Neurccomputing 171 23

    [5]

    Min G Q, Wang L D, Duan S K 2015 Acta Phys. Sin. 64 210507 (in Chinese) [闵国旗, 王丽丹, 段书凯 2015 物理学报 64 210507]

    [6]

    Mandelbrot B B 1967 Science 156 636

    [7]

    Mandelbrot B B 1975 Fractals: Form, Chance and Dimension (San Francisco: WH Freeman and Company) pp35-37

    [8]

    Li H Q, Wang F Q 1999 Fractal Theory and Its Application in Molecular Science (Beijing: Science Press) p33 (in Chinese) [李后强, 汪富泉 1999分形理论及其在分子科学中的应用(北京:科学出版社) 第33页]

    [9]

    Lorenz E N 1963 J. Atmos. Sci. 20 130

    [10]

    Chua L O, Komuro M, Matsumoto T 1986 IEEE Trans. Circ. Syst. 33 1072

    [11]

    Chen G R 1999 Int. J. Bifurcat. Chaos 9 1465

    [12]

    Wang L D, Drakakis E, Duan S K, He P F, Liao X F 2012 Int. J. Bifurcat. Chaos 22 1250205

    [13]

    Muthuswamy B, Kokate P P 2009 IETE Tech. Rev. 26 417

    [14]

    Zhou Z W, Su Y L, Wang W D, Yan Y 2017 J. Petrol. Explor. Prod. Technol. 7 487

    [15]

    Bouallegue K 2015 Int. J. Bifurcat. Chaos 25 1530002

    [16]

    Chua L O, Roska T 1993 IEEE Trans. Circ. Syst. I 40 147

    [17]

    Yalcin M, Suykens J, Vandewalle J, Ozoguz S 2002 Int. J. Bifurcat. Chaos 12 23

    [18]

    Tang W K S, Zhong G Q, Chen G, Man K F 2001 IEEE Trans. Circ. Syst. I 48 1369

    [19]

    Zarei A 2015 Nonlinear Dyn. 81 585

    [20]

    More C, Vlad R, Chauveau E 2010 Nonlinear Dyn. 59 45

    [21]

    Huan S M, Li Q D, Yang X S 2012 Nonlinear Dyn. 69 1915

    [22]

    L J H, Yu X H, Chen G R 2003 IEEE Trans. Circ. Syst. I 50 198

    [23]

    Yalcin M, Suykens J, van de Walle J 2005 Chaos Modeling and Control Systems Design (Singapore: World Scientific) p59

    [24]

    L J H, Chen G R, Yu X H, Leung H 2004 IEEE Trans. Circ. Syst. I 51 2476

    [25]

    L J H, Yu S M, Leung H, Chen G R 2006 IEEE Trans. Circ. Syst. I 53 149

  • 引用本文:
    Citation:
计量
  • 文章访问数:  2188
  • PDF下载量:  203
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-12-28
  • 修回日期:  2018-02-05
  • 刊出日期:  2018-05-05

基于Julia分形的多涡卷忆阻混沌系统

  • 1. 西南大学电子信息工程学院, 重庆 400715;
  • 2. 非线性电路与智能信息处理重庆市重点实验室, 重庆 400715
  • 通信作者: 段书凯, duansk@swu.edu.cn
    基金项目: 

    国家自然科学基金(批准号:61372139,61571372,61672436)、中央高校基本科研业务费专项资金(批准号:XDJK2016A001,XDJK2014A009)和重庆市基础科学与前沿技术研究(批准号:cstc2017jcyjBX0050)资助的课题.

摘要: 忆阻器作为一种非线性电子元件,能用作混沌系统中的非线性项,从而提高系统的复杂度.分形与混沌是密切相连的,分别对两者的研究都已成熟,却鲜有将分形过程应用到混沌系统中,以产生丰富的混沌吸引子.为了探索将分形与混沌系统相结合的可能性,本文首先提出了一个新的忆阻混沌系统,并从对称性、耗散性、平衡点稳定性、功率谱、Lyapunov指数和分数维等方面探讨了系统的动力学特性;紧接着,把经典的Julia分形过程应用到该忆阻混沌系统中,产生了新的混沌吸引子,并将几种由Julia分形衍生的变形Julia分形过程应用于文中提出的忆阻混沌系统,获得了丰富的混沌吸引子;最后,讨论了分形过程中的复常数对系统的影响.从仿真结果可以看出,分形过程与混沌系统的结合能产生丰富的多涡卷混沌吸引子.这不仅为产生多涡卷混沌吸引子提供了一种新方法,还弥补了使用功能函数方法造成混沌系统不光滑的不足.

English Abstract

参考文献 (25)

目录

    /

    返回文章
    返回