搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

忆阻自激振荡系统的隐藏吸引子及其动力学特性

包涵 包伯成 林毅 王将 武花干

忆阻自激振荡系统的隐藏吸引子及其动力学特性

包涵, 包伯成, 林毅, 王将, 武花干
PDF
导出引用
导出核心图
  • 由压控忆阻替换三维自激振荡系统的线性耦合电阻,实现了一种新型的四维忆阻自激振荡系统. 该系统不存在任何平衡点,但可生成周期、准周期、混沌等隐藏吸引子;特别地,当初始条件不同时,系统出现了不同拓扑结构混沌吸引子或准周期极限环与混沌吸引子的共存现象,以及准周期极限环与多种拓扑结构混沌吸引子的多吸引子现象. 理论分析、数值仿真和硬件实验的结果一致,表明了所提出的忆阻自激振荡系统有着十分丰富而复杂的隐藏动力学特性.
      通信作者: 包伯成, mervinbao@126.com
    • 基金项目: 国家自然科学基金(批准号:51277017)、江苏省高校自然科学研究基金(批准号:15JKB510001)和常州市基础研究计划(批准号:CJ20159026)资助的课题.
    [1]

    Lorenz E N 1963 J. Atmos. Sci. 20 130

    [2]

    Rssler O E 1976 Phys. Lett. A 57 397

    [3]

    Chen G R, Ueta T 1999 Int. J. Bifurcation Chaos 9 1465

    [4]

    L J H, Chen G R 2002 Int. J. Bifurcation Chaos 12 659

    [5]

    Liu W B, Chen G R 2003 Int. J. Bifurcation Chaos 13 261

    [6]

    L J H, Chen G R, Cheng D 2004 Int. J. Bifurcation Chaos 14 1507

    [7]

    Liu C X, Liu T, Liu L, Liu K 2004 Chaos, Solitions Fractals 22 1031

    [8]

    Qi G Y, Chen G R, Du S Z, Chen Z Q, Yuan Z Z 2005 Physica A 352 295

    [9]

    Bao B C, Liu Z, Xu J P 2009 J. Sys. Eng. Electron. 20 1179

    [10]

    Yu S M, L J H, Yu X H, Chen G R 2012 IEEE Trans. Circuits Syst. I: Regular Papers 59 1015

    [11]

    Bao B C, Zhou G H, Xu J P, Liu Z 2010 Int. J. Bifurcation Chaos 20 2203

    [12]

    Peng Z P, Wang C H, Lin Y, Luo X W 2014 Acta Phys. Sin. 63 240506 (in Chinese) [彭再平, 王春华, 林愿, 骆小文 2014 物理学报 63 240506]

    [13]

    Bao B C 2013 An Introduction to Chaotic Circuits (Beijing: Science Press) p68 (in Chinese) [包伯成 2013 混沌电路导论 (北京: 科学出版社) 第68页]

    [14]

    Chua L O 2012 Proc. IEEE 100 1920

    [15]

    Wang G Y, He J L, Yuan F, Peng C J 2013 Chin. Phys. Lett. 30 110506

    [16]

    Bao B C, Hu F W, Liu Z, Xu J P 2014 Chin. Phys. B 23 070503

    [17]

    Li Q D, Zeng H Z, Li J 2015 Nonlinear Dyn. 79 2295

    [18]

    Li Z J, Zeng Y C, Li Z B 2014 Acta Phys. Sin. 63 010502 (in Chinese) [李志军, 曾以成, 李志斌 2014 物理学报 63 010502]

    [19]

    Strukov D B, Snider G S, Stewart D R, Williams R S 2008 Nature 453 80

    [20]

    Kim H, Sah M P, Yang C, Cho S, Chua L O 2012 IEEE Trans. Circuits Syst. I: Regular Papers 59 2422

    [21]

    Bao B C, Xu J P, Zhou G H, Ma Z H, Zou L 2011 Chin. Phys. B 20 120502

    [22]

    Wu H G, Bao B C, Chen M 2014 Chin. Phys. B 23 118401

    [23]

    Wang X Y, Fitch A L, Iu H H C, Sreeramb V, Qi W G 2012 Chin. Phys. B 21 108501

    [24]

    Corinto F, Ascoli A 2012 Electron. Lett. 48 824

    [25]

    Bao B C, Yu J J, Hu F W, Liu Z 2014 Int. J. Bifurcation Chaos 24 1450143

    [26]

    Leonov G A, Kuznetsov N V, Vagaitsev V I 2011 Phys. Lett. A 375 2230

    [27]

    Leonov G A, Kuznetsov N V, Mokaev T N 2015 Commu. Nonlinear Sci. Numer. Simul. 28 166

    [28]

    Li C B, Sprott J C 2014 Int. J. Bifurcation Chaos 24 1450034

    [29]

    Li Q D, Zeng H Z, Yang X S 2014 Nonlinear Dyn. 77 255

    [30]

    Wei Z C 2011 Phys. Lett. A 376 102

    [31]

    Sharma P R, Shrimali M D, Prasad A, Leonov G A, Kuznetsov N V 2015 Int. J. Bifurcation Chaos 25 1550061

    [32]

    Zhao H T, Lin Y P, Dai Y X 2014 Int. J. Bifurcation Chaos 24 1450080

    [33]

    Dang X Y, Li C B, Bao B C, Wu H G 2015 Chin. Phys. B 24 050503

    [34]

    Xu Q, Lin Y, Bao B C, Chen M 2016 Chaos, Solitions Fractals 83 186

    [35]

    Bao B C, Li Q D, Wang N, Xu Q 2016 Chaos 26 043111

    [36]

    Pisarchik A N, Feudel U 2014 Phys. Rep. 540 167

    [37]

    Patel M S, Patel U, Sen A, Sethia G C, Hens C, Dana S K 2014 Phys. Rev. E 89 022918

    [38]

    Bao B C, Xu Q, Bao H, Chen M 2016 Electron. Lett. 52 1008

    [39]

    Kuznetsov A P, Kuznetsov S P, Stankevich N V 2010 Commun. Nonlinear Sci. Numer. Simul. 15 1676

    [40]

    Kuznetsov A P, Kuznetsov S P, Mosekilde E, Stankevich N V 2013 Eur. Phys. J. Spec. Top. 222 2391

    [41]

    Kuznetsov A P, Kuznetsov S P, Mosekilde E, Stankevich N V 2015 J. Phys. A 48 125101

    [42]

    Chen M, Yu J J, Bao B C 2015 Electron. Lett. 51 462

    [43]

    Wolf A, Swift J B, Swinney H L, Vastano J A 1985 Physica D 16 285

    [44]

    Bao B C, Wang C L, Wu H G, Qiao X H 2014 Acta Phys. Sin. 63 240504 (in Chinese) [包伯成, 王春丽, 武花干, 乔晓华 2014 物理学报 63 240504]

    [45]

    Kengne J, Tabekoueng Z N, Tamba V K, Negou A N 2015 Chaos 25 103126

  • [1]

    Lorenz E N 1963 J. Atmos. Sci. 20 130

    [2]

    Rssler O E 1976 Phys. Lett. A 57 397

    [3]

    Chen G R, Ueta T 1999 Int. J. Bifurcation Chaos 9 1465

    [4]

    L J H, Chen G R 2002 Int. J. Bifurcation Chaos 12 659

    [5]

    Liu W B, Chen G R 2003 Int. J. Bifurcation Chaos 13 261

    [6]

    L J H, Chen G R, Cheng D 2004 Int. J. Bifurcation Chaos 14 1507

    [7]

    Liu C X, Liu T, Liu L, Liu K 2004 Chaos, Solitions Fractals 22 1031

    [8]

    Qi G Y, Chen G R, Du S Z, Chen Z Q, Yuan Z Z 2005 Physica A 352 295

    [9]

    Bao B C, Liu Z, Xu J P 2009 J. Sys. Eng. Electron. 20 1179

    [10]

    Yu S M, L J H, Yu X H, Chen G R 2012 IEEE Trans. Circuits Syst. I: Regular Papers 59 1015

    [11]

    Bao B C, Zhou G H, Xu J P, Liu Z 2010 Int. J. Bifurcation Chaos 20 2203

    [12]

    Peng Z P, Wang C H, Lin Y, Luo X W 2014 Acta Phys. Sin. 63 240506 (in Chinese) [彭再平, 王春华, 林愿, 骆小文 2014 物理学报 63 240506]

    [13]

    Bao B C 2013 An Introduction to Chaotic Circuits (Beijing: Science Press) p68 (in Chinese) [包伯成 2013 混沌电路导论 (北京: 科学出版社) 第68页]

    [14]

    Chua L O 2012 Proc. IEEE 100 1920

    [15]

    Wang G Y, He J L, Yuan F, Peng C J 2013 Chin. Phys. Lett. 30 110506

    [16]

    Bao B C, Hu F W, Liu Z, Xu J P 2014 Chin. Phys. B 23 070503

    [17]

    Li Q D, Zeng H Z, Li J 2015 Nonlinear Dyn. 79 2295

    [18]

    Li Z J, Zeng Y C, Li Z B 2014 Acta Phys. Sin. 63 010502 (in Chinese) [李志军, 曾以成, 李志斌 2014 物理学报 63 010502]

    [19]

    Strukov D B, Snider G S, Stewart D R, Williams R S 2008 Nature 453 80

    [20]

    Kim H, Sah M P, Yang C, Cho S, Chua L O 2012 IEEE Trans. Circuits Syst. I: Regular Papers 59 2422

    [21]

    Bao B C, Xu J P, Zhou G H, Ma Z H, Zou L 2011 Chin. Phys. B 20 120502

    [22]

    Wu H G, Bao B C, Chen M 2014 Chin. Phys. B 23 118401

    [23]

    Wang X Y, Fitch A L, Iu H H C, Sreeramb V, Qi W G 2012 Chin. Phys. B 21 108501

    [24]

    Corinto F, Ascoli A 2012 Electron. Lett. 48 824

    [25]

    Bao B C, Yu J J, Hu F W, Liu Z 2014 Int. J. Bifurcation Chaos 24 1450143

    [26]

    Leonov G A, Kuznetsov N V, Vagaitsev V I 2011 Phys. Lett. A 375 2230

    [27]

    Leonov G A, Kuznetsov N V, Mokaev T N 2015 Commu. Nonlinear Sci. Numer. Simul. 28 166

    [28]

    Li C B, Sprott J C 2014 Int. J. Bifurcation Chaos 24 1450034

    [29]

    Li Q D, Zeng H Z, Yang X S 2014 Nonlinear Dyn. 77 255

    [30]

    Wei Z C 2011 Phys. Lett. A 376 102

    [31]

    Sharma P R, Shrimali M D, Prasad A, Leonov G A, Kuznetsov N V 2015 Int. J. Bifurcation Chaos 25 1550061

    [32]

    Zhao H T, Lin Y P, Dai Y X 2014 Int. J. Bifurcation Chaos 24 1450080

    [33]

    Dang X Y, Li C B, Bao B C, Wu H G 2015 Chin. Phys. B 24 050503

    [34]

    Xu Q, Lin Y, Bao B C, Chen M 2016 Chaos, Solitions Fractals 83 186

    [35]

    Bao B C, Li Q D, Wang N, Xu Q 2016 Chaos 26 043111

    [36]

    Pisarchik A N, Feudel U 2014 Phys. Rep. 540 167

    [37]

    Patel M S, Patel U, Sen A, Sethia G C, Hens C, Dana S K 2014 Phys. Rev. E 89 022918

    [38]

    Bao B C, Xu Q, Bao H, Chen M 2016 Electron. Lett. 52 1008

    [39]

    Kuznetsov A P, Kuznetsov S P, Stankevich N V 2010 Commun. Nonlinear Sci. Numer. Simul. 15 1676

    [40]

    Kuznetsov A P, Kuznetsov S P, Mosekilde E, Stankevich N V 2013 Eur. Phys. J. Spec. Top. 222 2391

    [41]

    Kuznetsov A P, Kuznetsov S P, Mosekilde E, Stankevich N V 2015 J. Phys. A 48 125101

    [42]

    Chen M, Yu J J, Bao B C 2015 Electron. Lett. 51 462

    [43]

    Wolf A, Swift J B, Swinney H L, Vastano J A 1985 Physica D 16 285

    [44]

    Bao B C, Wang C L, Wu H G, Qiao X H 2014 Acta Phys. Sin. 63 240504 (in Chinese) [包伯成, 王春丽, 武花干, 乔晓华 2014 物理学报 63 240504]

    [45]

    Kengne J, Tabekoueng Z N, Tamba V K, Negou A N 2015 Chaos 25 103126

  • [1] 郑广超, 刘崇新, 王琰. 一种具有隐藏吸引子的分数阶混沌系统的动力学分析及有限时间同步. 物理学报, 2018, 67(5): 050502. doi: 10.7498/aps.67.20172354
    [2] 蔡国梁, 谭振梅, 周维怀, 涂文桃. 一个新的混沌系统的动力学分析及混沌控制. 物理学报, 2007, 56(11): 6230-6237. doi: 10.7498/aps.56.6230
    [3] 肖利全, 段书凯, 王丽丹. 基于Julia分形的多涡卷忆阻混沌系统. 物理学报, 2018, 67(9): 090502. doi: 10.7498/aps.67.20172761
    [4] 黄丽莲, 辛方, 王霖郁. 新分数阶超混沌系统的研究与控制及其电路实现. 物理学报, 2011, 60(1): 010505. doi: 10.7498/aps.60.010505
    [5] 郑桂波, 金宁德. 两相流流型多尺度熵及动力学特性分析. 物理学报, 2009, 58(7): 4485-4492. doi: 10.7498/aps.58.4485
    [6] 和兴锁, 李雪华, 邓峰岩. 平面柔性梁的刚-柔耦合动力学特性分析与仿真. 物理学报, 2011, 60(2): 024502. doi: 10.7498/aps.60.024502
    [7] 蒋树庆, 甯家敏, 陈法新, 叶繁, 薛飞彪, 李林波, 杨建伦, 陈进川, 周林, 秦义, 李正宏, 徐荣昆, 许泽平. Z箍缩动态黑腔动力学及辐射特性初步实验研究. 物理学报, 2013, 62(15): 155203. doi: 10.7498/aps.62.155203
    [8] 宁利中, 张珂, 宁碧波, 刘爽, 田伟利. 倾斜Poiseuille-Rayleigh-Bénard流动的对流分区与动力学特性. 物理学报, 2020, 69(12): 124401. doi: 10.7498/aps.69.20191941
    [9] 王小发, 李骏. 短外腔偏振旋转光反馈下1550 nm垂直腔面发射激光器的动力学特性研究 . 物理学报, 2014, 63(1): 014203. doi: 10.7498/aps.63.014203
    [10] 吴渝, 杨晶晶, 王利. Swarm模型突现行为的动力学特性分析. 物理学报, 2011, 60(10): 108902. doi: 10.7498/aps.60.108902
    [11] 胡文, 蒋飞, 刘中, 包伯成. 连续混沌调频信号的动力学设计与分析. 物理学报, 2010, 59(1): 116-122. doi: 10.7498/aps.59.116
    [12] 刘中, 包伯成, 周国华, 许建平. 斜坡补偿电流模式控制开关变换器的动力学建模与分析. 物理学报, 2010, 59(6): 3769-3777. doi: 10.7498/aps.59.3769
    [13] 李洪伟, 周云龙, 刘旭, 孙斌. 基于随机子空间结合稳定图的气液两相流型分析. 物理学报, 2012, 61(3): 030508. doi: 10.7498/aps.61.030508
    [14] 刘中, 包伯成, 许建平. 忆阻混沌振荡器的动力学分析. 物理学报, 2010, 59(6): 3785-3793. doi: 10.7498/aps.59.3785
    [15] 袁方, 王光义, 靳培培. 一种忆感器模型及其振荡器的动力学特性研究. 物理学报, 2015, 64(21): 210504. doi: 10.7498/aps.64.210504
    [16] 朱雷, 刘中, 包伯成, 许建平. 基于Colpitts振荡器模型生成的多涡卷超混沌吸引子. 物理学报, 2010, 59(3): 1540-1548. doi: 10.7498/aps.59.1540
    [17] 邢雅清, 陈小可, 张正娣, 毕勤胜. 多平衡态下簇发振荡产生机理及吸引子结构分析. 物理学报, 2016, 65(9): 090501. doi: 10.7498/aps.65.090501
    [18] 吴天一, 陈小可, 张正娣, 张晓芳, 毕勤胜. 非对称型簇发振荡吸引子结构及其机理分析. 物理学报, 2017, 66(11): 110501. doi: 10.7498/aps.66.110501
    [19] 肖 楠, 金宁德. 基于混沌吸引子形态特性的两相流流型分类方法研究. 物理学报, 2007, 56(9): 5149-5157. doi: 10.7498/aps.56.5149
    [20] 王发强, 刘崇新, 逯俊杰. 四维系统中多涡卷混沌吸引子的仿真研究. 物理学报, 2006, 55(7): 3289-3294. doi: 10.7498/aps.55.3289
  • 引用本文:
    Citation:
计量
  • 文章访问数:  627
  • PDF下载量:  509
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-08
  • 修回日期:  2016-06-06
  • 刊出日期:  2016-09-20

忆阻自激振荡系统的隐藏吸引子及其动力学特性

  • 1. 常州大学信息科学与工程学院, 常州 213164
  • 通信作者: 包伯成, mervinbao@126.com
    基金项目: 

    国家自然科学基金(批准号:51277017)、江苏省高校自然科学研究基金(批准号:15JKB510001)和常州市基础研究计划(批准号:CJ20159026)资助的课题.

摘要: 由压控忆阻替换三维自激振荡系统的线性耦合电阻,实现了一种新型的四维忆阻自激振荡系统. 该系统不存在任何平衡点,但可生成周期、准周期、混沌等隐藏吸引子;特别地,当初始条件不同时,系统出现了不同拓扑结构混沌吸引子或准周期极限环与混沌吸引子的共存现象,以及准周期极限环与多种拓扑结构混沌吸引子的多吸引子现象. 理论分析、数值仿真和硬件实验的结果一致,表明了所提出的忆阻自激振荡系统有着十分丰富而复杂的隐藏动力学特性.

English Abstract

参考文献 (45)

目录

    /

    返回文章
    返回