Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Strong kinetic effect of polyethylene glycol 6000 under directional solidification condition

Tian Li-Li Wang Nan Peng Yin-Li Yao Wen-Jing

Strong kinetic effect of polyethylene glycol 6000 under directional solidification condition

Tian Li-Li, Wang Nan, Peng Yin-Li, Yao Wen-Jing
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Interface characterizes describes how the atoms/molecules attach themselves to the solid/liquid interface from the liquid when the crystallization takes place, which plays a key role in revealing the kinetic mechanism during the crystal growth. For common non-facet/non-facet metallic systems, the kinetic undercooling is usually small and it becomes only significant when the growth velocity is high. However, high growth velocity can be usually realized under large undercooling condition. In this case, the interface temperature cannot be measured, thus the kinetic undercooling cannot be determined quantitatively either. Compared with the atom and small molecule materials, the polymer has its distinctive characteristic of different long chains, which are entangled together in a liquid state. Thus the crystallization of the polymer system usually proceeds in the two-dimensional manner, which provides an ideal way to obtain large kinetic undercooling under the small growth velocity condition. The directional crystallization technique has been widely adopted to study the scaling law of undercooling and growth velocity due to its accurate controlling of growth velocity and temperature gradient. Therefore, it offers an appropriate way to make a quantitative investigation. In this paper, the in-situ observations of the solidification of polyethylene glycol 6000 at different pulling velocities are performed and the interface temperature is examined as well by using the directional crystallization technique. The effect of the pulling rate on the growth kinetics is examined. The results reveal that the interface temperature decreases and the undercooling increases gradually with the pulling velocity increasing. A change in the growth regime is observed at T=13.5 K, where regime Ⅱ-regime Ⅲ transition occurs according to Hoffman's kinetic theory of polymer crystallization. The comparison of undercooling between the present work and DSC isothermal crystallization is made, and it shows that the data obtained in the directional growth and the isothermal growth follow the same trends but the undercooling in isothermal growth is larger than in directional growth under the same growth velocity. This indicates that the undercooling in the latter case is over-estimated since it contains the thermal undercooling. Undercooling is the driving force for crystallization, which usually includes solute undercooling, curvature undercooling, thermal undercooling, and kinetic undercooling. Because of the flat interface and the pure material, there is no solute undercooling nor curvature cooling in the present case. The thermal undercooling is also zero in the unidirectional crystallization process. Thus the total undercooling in the present work is the kinetic undercooling. The maximum kinetic undercooling reaches 20 K, indicating that the interface kinetic controlling growth takes place due to the two-dimensional nucleation in polymer.
      Corresponding author: Wang Nan, nan.wang@nwpu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51271149) and the National Aerospace Science Foundation of China (Grant No. 2013ZF53080).
    [1]

    Kurz W, Fisher D J 1998 Fundamental of Solidification (Switzerland: Trans. Tech. Pub. Ltd.) pp 28-34

    [2]

    Barth M, Wei B, Herlach D M 1995 Phys. Rev. B 51 3422

    [3]

    Maitra T, Gupta S P 2002 Mater. Charact. 49 293

    [4]

    Suzuki A, Saddock N D, Jones J W, Pollock T M 2005 Acta Mater. 53 2823

    [5]

    Hoffman J D, Davis G T, Lauritzen J I, Hannay N B 1976 Treatise on Solid State Chemistry (New York: Plenum) pp 497-614

    [6]

    Hoffman J D 1983 Polymer 24 3

    [7]

    Hoffman J D 1973 J. Appl. Phys. 44 4430

    [8]

    Turnbull D, Fisher J C 1949 J. Chem. Phys. 17 1949

    [9]

    Monasse B, Haudin J M 1985 Colloid Polym. Sci. 263 822

    [10]

    Lu X F, Hay J N 2001 Polymer 42 9423

    [11]

    Kovacs A J, Straupe C, Gonthier A 1977 J. Polym. Sci. Part C: Polym. Symp. 59 31

    [12]

    Kovacs A J, Gonthier A, Straupe C 1975 J. Polym. Sci. 50 283

    [13]

    Buckley C P, Kovacs A J 1976 Colloid Polym. Sci. 254 695

    [14]

    Mota F L, Bergeon N, Tourret D, Karma A, Trivedi R, Billia B 2015 Acta Metall. 85 362

    [15]

    Fabietti L M, Mazumder P, Trivedi R 2015 Scripta Mater. 97 29

    [16]

    Bai B B, Lin X, Wang L L, Wang X B, Wang M, Huang W D 2013 Acta Phys. Sin. 62 218103 (in Chinese) [白贝贝, 林鑫, 王理林, 王贤斌, 王猛, 黄卫东 2013 物理学报 62 218103]

    [17]

    Wang X B, Lin X, Wang L L, Bai B B, Wang M, Huang W D 2013 Acta Phys. Sin. 62 108103 (in Chinese) [王贤斌, 林鑫, 王理林, 白贝贝, 王猛, 黄卫东 2013 物理学报 62 108103]

    [18]

    Serefoglu M, Napolitano R E 2011 Acta Mater. 59 1048

    [19]

    Farup I, Drezet J M, Rappaz M 2001 Acta Mater. 49 1261

    [20]

    Bottin R S, Perrut M, Picard C, Akamatsu S, Faivre G 2007 J. Cryst. Growth 306 465

    [21]

    Huang W D, Ding G L, Zhou Y H 1995 Chin. J. Mater. Res. 9 193 (in Chinese) [黄卫东, 丁国陆, 周尧和 1995 材料研究学报 9 193]

    [22]

    Li S M, Du W, Zhang J, Li J S, Liu L, Fu H Z 2002 Acta Metall. Sin. 38 1195 (in Chinese) [李双明, 杜炜, 张军, 李金山, 刘林, 傅恒志 2002 金属学报 38 1195]

    [23]

    Lin X, Li T, Wang L L, Su Y P, Huang W D 2004 Acta Phys. Sin. 53 3971 (in Chinese) [林鑫, 李涛, 王琳琳, 苏云鹏, 黄卫东 2004 物理学报 53 3971]

    [24]

    Huang W D, Lin X, Tao L, Wang L L, Inatomi Y 2004 Acta Phys. Sin. 53 3978 (in Chinese) [黄卫东, 林鑫, 李涛, 王琳琳, Lnatomi Y 2004 物理学报 53 3978]

    [25]

    Craig D Q M 1995 Thermochim. Acta 248 189

    [26]

    Berlanga R, Sunol J J, Saurina J, Oliveira J 2001 J. Macromol. Sci. Phys. B40 327

    [27]

    Wang N, Gao J R, Wei B 1999 Scripta Mater. 41 959

  • [1]

    Kurz W, Fisher D J 1998 Fundamental of Solidification (Switzerland: Trans. Tech. Pub. Ltd.) pp 28-34

    [2]

    Barth M, Wei B, Herlach D M 1995 Phys. Rev. B 51 3422

    [3]

    Maitra T, Gupta S P 2002 Mater. Charact. 49 293

    [4]

    Suzuki A, Saddock N D, Jones J W, Pollock T M 2005 Acta Mater. 53 2823

    [5]

    Hoffman J D, Davis G T, Lauritzen J I, Hannay N B 1976 Treatise on Solid State Chemistry (New York: Plenum) pp 497-614

    [6]

    Hoffman J D 1983 Polymer 24 3

    [7]

    Hoffman J D 1973 J. Appl. Phys. 44 4430

    [8]

    Turnbull D, Fisher J C 1949 J. Chem. Phys. 17 1949

    [9]

    Monasse B, Haudin J M 1985 Colloid Polym. Sci. 263 822

    [10]

    Lu X F, Hay J N 2001 Polymer 42 9423

    [11]

    Kovacs A J, Straupe C, Gonthier A 1977 J. Polym. Sci. Part C: Polym. Symp. 59 31

    [12]

    Kovacs A J, Gonthier A, Straupe C 1975 J. Polym. Sci. 50 283

    [13]

    Buckley C P, Kovacs A J 1976 Colloid Polym. Sci. 254 695

    [14]

    Mota F L, Bergeon N, Tourret D, Karma A, Trivedi R, Billia B 2015 Acta Metall. 85 362

    [15]

    Fabietti L M, Mazumder P, Trivedi R 2015 Scripta Mater. 97 29

    [16]

    Bai B B, Lin X, Wang L L, Wang X B, Wang M, Huang W D 2013 Acta Phys. Sin. 62 218103 (in Chinese) [白贝贝, 林鑫, 王理林, 王贤斌, 王猛, 黄卫东 2013 物理学报 62 218103]

    [17]

    Wang X B, Lin X, Wang L L, Bai B B, Wang M, Huang W D 2013 Acta Phys. Sin. 62 108103 (in Chinese) [王贤斌, 林鑫, 王理林, 白贝贝, 王猛, 黄卫东 2013 物理学报 62 108103]

    [18]

    Serefoglu M, Napolitano R E 2011 Acta Mater. 59 1048

    [19]

    Farup I, Drezet J M, Rappaz M 2001 Acta Mater. 49 1261

    [20]

    Bottin R S, Perrut M, Picard C, Akamatsu S, Faivre G 2007 J. Cryst. Growth 306 465

    [21]

    Huang W D, Ding G L, Zhou Y H 1995 Chin. J. Mater. Res. 9 193 (in Chinese) [黄卫东, 丁国陆, 周尧和 1995 材料研究学报 9 193]

    [22]

    Li S M, Du W, Zhang J, Li J S, Liu L, Fu H Z 2002 Acta Metall. Sin. 38 1195 (in Chinese) [李双明, 杜炜, 张军, 李金山, 刘林, 傅恒志 2002 金属学报 38 1195]

    [23]

    Lin X, Li T, Wang L L, Su Y P, Huang W D 2004 Acta Phys. Sin. 53 3971 (in Chinese) [林鑫, 李涛, 王琳琳, 苏云鹏, 黄卫东 2004 物理学报 53 3971]

    [24]

    Huang W D, Lin X, Tao L, Wang L L, Inatomi Y 2004 Acta Phys. Sin. 53 3978 (in Chinese) [黄卫东, 林鑫, 李涛, 王琳琳, Lnatomi Y 2004 物理学报 53 3978]

    [25]

    Craig D Q M 1995 Thermochim. Acta 248 189

    [26]

    Berlanga R, Sunol J J, Saurina J, Oliveira J 2001 J. Macromol. Sci. Phys. B40 327

    [27]

    Wang N, Gao J R, Wei B 1999 Scripta Mater. 41 959

  • [1] LIU ZHI-GUO, ZHU YU-PING, CHEN GUANG-HUI, CHEN YONG, ZHANG QI-RUI, ZHOU XIAN-YI. A STUDY ON CRYSTALLIZATION KINETICS OF SUPERCON-DUCTING METALLIC GLASS Zr78Co22. Acta Physica Sinica, 1989, 38(6): 931-937. doi: 10.7498/aps.38.931
    [2] Li Rui-Tao, Tang Gang, Xia Hui, Xun Zhi-Peng, Li Jia-Xiang, Zhu Lei. Numerical simulation of melting dynamic process and surface scale properties of two-dimensional honeycomb lattice. Acta Physica Sinica, 2019, 68(5): 050301. doi: 10.7498/aps.68.20181774
    [3] Cong Dong-Liang, Xu Peng, Wang Ye-Bing, Chang Hong. Simulations using Monte Carlo method and expriment on dynamics of two-dimensional collimated thermal atomic beam of strontium. Acta Physica Sinica, 2013, 62(15): 153702. doi: 10.7498/aps.62.153702
    [4] ZHANG KAI-WANG, YUAN HUI-QIU, ZHONG JIAN-XIN. ELECTRONIC DYNAMICS IN AN INCOMMENSURATE SYSTEM. Acta Physica Sinica, 1999, 48(3): 497-504. doi: 10.7498/aps.48.497
    [5] Wang Zi-Dong, Xie Jian-Xin, Chen Ming-Wen, Ni Feng, Wang Yan-Lin. Effect of interface kinetics on the interface morphology of a spherical crystal in the undercooled melt. Acta Physica Sinica, 2011, 60(6): 068103. doi: 10.7498/aps.60.068103
    [6] Liu Li-Xia, Hou Zhao-Yang, Liu Rang-Su. Simulation study on the dynamic mechanisms of nucleation during the initial stage of supercooled liquid potassium. Acta Physica Sinica, 2012, 61(5): 056101. doi: 10.7498/aps.61.056101
    [7] CHEN KUI-YING, LI QING-CHUN. MICRODYNAMICAL BEHAVIORS OF SUPERCOOLED LIQUID Mg-Ca ALLOY. Acta Physica Sinica, 1993, 42(9): 1491-1498. doi: 10.7498/aps.42.1491
    [8] He Shou-Jie, Zhou Jia, Qu Yu-Xiao, Zhang Bao-Ming, Zhang Ya, Li Qing. Simulation on complex dynamics of hollow cathode discharge in argon. Acta Physica Sinica, 2019, 68(21): 215101. doi: 10.7498/aps.68.20190734
    [9] Ning Cheng, Ding Ning, Liu Quan, Yang Zhen-Hua. Studies of implosion processes of nested tungsten wire-array Z-pinch. Acta Physica Sinica, 2006, 55(7): 3488-3493. doi: 10.7498/aps.55.3488
    [10] Huang Xian-Bin, Yang Li-Bing, Gu Yuan-Chao, Deng Jian-Jun, Zhou Rong-Guo, Zou Jie, Zhou Shao-Tong, Zhang Si-Qun, Chen Guang-Hua, Chang Li-Hua, Li Feng-Ping, Ouyang Kai, Li Jun, Yang Liang, Wang Xiong. Experimental studies of the argon-puff Z-pinch implosion process. Acta Physica Sinica, 2006, 55(4): 1900-1906. doi: 10.7498/aps.55.1900
    [11] Jia Xiao-Xia, Dong Li-Qiang, Huang Shi-Hua, Chen Bao-Jiu. Studies on the dynamic process of up-conversion green emission from Er3+ under square wave excitation. Acta Physica Sinica, 2009, 58(3): 2061-2066. doi: 10.7498/aps.58.2061
    [12] Hu Xiao-Ying, Zhou Ya-Jun. Optical model potential effect in (e,2e) collisions of argon. Acta Physica Sinica, 2010, 59(4): 2423-2427. doi: 10.7498/aps.59.2423
    [13] Wang Wen-Fang, Chen Ke, Wu Jing-Da, Wen Jin-Hui, Lai Tian-Shu. Influence of long lifetime absorption process on the measurement of ultrafast carrier dynamics. Acta Physica Sinica, 2011, 60(11): 117802. doi: 10.7498/aps.60.117802
    [14] YAO YU-SHU, CHEN HONG, XU JI-AN, HE SHOU-AN. DYNAMIC PROCESS OFβ→α TRANSITION OF LiIO3 CRYSTALS UNDER HYDROSTATIC PRESSURE. Acta Physica Sinica, 1981, 30(6): 835-840. doi: 10.7498/aps.30.835
    [15] PAN DUO-HAI, ZHANG PENG-XIANG, FU SHI-YOU. A STUDY OF ADSORPTION DYNAMICS BY SERS. Acta Physica Sinica, 1989, 38(6): 010300. doi: 10.7498/aps.38.10300
    [16] CHEN KE-MING, SHENG CHI, YU MING-REN, JIN GAO-LONG. THE GROWTH DYNAMICS OF Si(111) MBE STUDIED BY RHEED INTENSITY OSCILLATIONS. Acta Physica Sinica, 1990, 39(12): 1945-1951. doi: 10.7498/aps.39.1945
    [17] LI ZAI-GUANG, LIU ZU-LI, SONG WEN-DONG, WEI HE-LIN. A STUDY ON DYNAMICS OF dc GLOW DISCHARGE PLASMA AT AXIAL DIRECTION. Acta Physica Sinica, 1992, 41(1): 56-61. doi: 10.7498/aps.41.56
    [18] Ning Cheng, Yang Zhen-Hua, Ding Ning. Numerical studies of neon gas-puff Z-pinch dynamic processes. Acta Physica Sinica, 2003, 52(7): 1650-1655. doi: 10.7498/aps.52.1650
    [19] Li Cun-Biao, Meng Qing-Guo, Li Rui-Qu. A link between the turbulent cascade and the dynamics of transition. Acta Physica Sinica, 2004, 53(8): 2621-2624. doi: 10.7498/aps.53.2621
    [20] Lou Zhi-Mei. Finding conserved quantities of three-dimensional second-order nonlinear coupled dynamics systems by the extended Prelle-Singer method. Acta Physica Sinica, 2010, 59(6): 3633-3638. doi: 10.7498/aps.59.3633
  • Citation:
Metrics
  • Abstract views:  877
  • PDF Downloads:  123
  • Cited By: 0
Publishing process
  • Received Date:  04 December 2015
  • Accepted Date:  05 January 2016
  • Published Online:  05 May 2016

Strong kinetic effect of polyethylene glycol 6000 under directional solidification condition

    Corresponding author: Wang Nan, nan.wang@nwpu.edu.cn
  • 1. Key Laboratory of Space Applied Physics and Chemistry, Ministy of Education School of Science, Northwestern Polytechnical University, Xi'an 710072, China
Fund Project:  Project supported by the National Natural Science Foundation of China (Grant No. 51271149) and the National Aerospace Science Foundation of China (Grant No. 2013ZF53080).

Abstract: Interface characterizes describes how the atoms/molecules attach themselves to the solid/liquid interface from the liquid when the crystallization takes place, which plays a key role in revealing the kinetic mechanism during the crystal growth. For common non-facet/non-facet metallic systems, the kinetic undercooling is usually small and it becomes only significant when the growth velocity is high. However, high growth velocity can be usually realized under large undercooling condition. In this case, the interface temperature cannot be measured, thus the kinetic undercooling cannot be determined quantitatively either. Compared with the atom and small molecule materials, the polymer has its distinctive characteristic of different long chains, which are entangled together in a liquid state. Thus the crystallization of the polymer system usually proceeds in the two-dimensional manner, which provides an ideal way to obtain large kinetic undercooling under the small growth velocity condition. The directional crystallization technique has been widely adopted to study the scaling law of undercooling and growth velocity due to its accurate controlling of growth velocity and temperature gradient. Therefore, it offers an appropriate way to make a quantitative investigation. In this paper, the in-situ observations of the solidification of polyethylene glycol 6000 at different pulling velocities are performed and the interface temperature is examined as well by using the directional crystallization technique. The effect of the pulling rate on the growth kinetics is examined. The results reveal that the interface temperature decreases and the undercooling increases gradually with the pulling velocity increasing. A change in the growth regime is observed at T=13.5 K, where regime Ⅱ-regime Ⅲ transition occurs according to Hoffman's kinetic theory of polymer crystallization. The comparison of undercooling between the present work and DSC isothermal crystallization is made, and it shows that the data obtained in the directional growth and the isothermal growth follow the same trends but the undercooling in isothermal growth is larger than in directional growth under the same growth velocity. This indicates that the undercooling in the latter case is over-estimated since it contains the thermal undercooling. Undercooling is the driving force for crystallization, which usually includes solute undercooling, curvature undercooling, thermal undercooling, and kinetic undercooling. Because of the flat interface and the pure material, there is no solute undercooling nor curvature cooling in the present case. The thermal undercooling is also zero in the unidirectional crystallization process. Thus the total undercooling in the present work is the kinetic undercooling. The maximum kinetic undercooling reaches 20 K, indicating that the interface kinetic controlling growth takes place due to the two-dimensional nucleation in polymer.

Reference (27)

Catalog

    /

    返回文章
    返回