Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

-ray detector based on n-type 4H-SiC Schottky barrier diode

Du Yuan-Yuan Zhang Chun-Lei Cao Xue-Lei

-ray detector based on n-type 4H-SiC Schottky barrier diode

Du Yuan-Yuan, Zhang Chun-Lei, Cao Xue-Lei
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Silicon carbide (SiC) is a wide band-gap, high-temperature-resistant, and radiation-resistant semiconducting material, which can be used as a radiation detector material in harsh environments such as high radiation background and high temperatures. Schottky barrier diode radiation detectors are fabricated using 100 upm-thick n-type 4H-SiC epitaxial layers for low energy -ray detection. The spectrum responses of 4H-SiC Schottky barrier detectors are investigated by irradiation of -ray from 241Am source. Schottky diodes are prepared by magnetron-sputtering 100 nm-thick nickel on epitaxial surface (Si face) to obtain Schottky contact and Ni/Au on substrate surface (C face) to obtain Ohmic back contact, respectively. Room temperature current-voltage (I-V) and capacitance-voltage (C-V) curves are measured to study the properties of Schottky diodes. Ohmic characteristic measurement shows that the Ohmic contact is formed after annealing in a temperature range of 900-1050℃, and the lowest specific contact resistivity of 2.5510-5 cm2 is obtained after annealing at 1050℃. The forward I-V curve reveals that the Schottky barrier height and the ideality factor are 1.617 eV and 1.127, respectively, indicating that the main current transportation process is the thermal electron emission. From the C-V curve, besides the net dopant concentration being inferred to be 2.9031014 cm-3, the profile of the free carrier concentration in epitaxial layer is also studied. A comparision of the reverse I-V curves of SiC Schottky diodes with different epitaxial layer thickness shows that the diode with 100 upm-thick epitaxial layer has a constant reverse leakage current when the bias voltage is less than 400 V, showing good rectification characteristics. By applying a reverse bias of 500 V, the diode has a leakage current of 2.11 nA, exhibiting a relatively high breakdown voltage. The depletion layer width of SiC detector is calculated to be 94.4 m at 500 V, indicating that the epitaxial layer is almost fully depleted. The signal of SiC detector through preamplifier displays a relatively low amplitude pulse (15 mV). A typical -ray spectrum response from SiC detector shows 9.49% (5.65 keV) energy resolution for 59.5 keV with a reverse bias of 300 V. The potential causes of poor count rate and energy resolution of fabricated detectors are analyzed in this article. The lower count rate is mainly caused by the narrow depletion layer, resulting in fewer photons deposited in sensitive region which can generate carriers. The poor energy resolution of SiC detector can be attributed to the electronic noise of read-out circuit, the pre-match amplifier circuit for detector needs to be improved, in addition, the extra defects existing in detector caused by increasing thickness of epitaxial layer can also deteriorate the detector performance.
      Corresponding author: Du Yuan-Yuan, duyuanyuan@ihep.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11203026).
    [1]

    Rogowski J, Kubiak A 2012 Mater. Sci. Eng. B 177 1318

    [2]

    Siad M, Vargas P C, Nkosi M, Saidi D, Souami N, Daas N, Chami C A 2009 Appl. Surf. Sci. 256 256

    [3]

    Bertuccio G, Caccia S, Puglisi D, Macera D 2011 Nucl. Instrum. Methods Phys. Res. Sect. A 652 193

    [4]

    Nava F, Vittone E, Vanni P, Verzellesi G, Fuochi G P, Lanzieri C, Glaser M 2003 Nucl. Instrum. Methods Phys. Res. Sect. A 505 645

    [5]

    Han C, Zhang Y M, Song Q W, Tang X Y, Zhang Y M, Guo H, Wang Y H 2015 Chin. Phys. B 24 117304

    [6]

    Yuan L, Zhang Y M, Song Q W, Tang X Y, Zhang Y M 2015 Chin. Phys. B 24 068502

    [7]

    Chaudhuri K S, Krishna M R, Zavalla J K, Mandal C K 2013 Nucl. Instrum. Methods Phys. Res. Sect. A 701 214

    [8]

    Mandal C K, Muzykov G P, Chaudhuri K S, Terry R J 2013 IEEE Trans. Nucl. Sci. 60 2888

    [9]

    Flammang W R, Seidel G J, Ruddy H F 2007 Nucl. Instrum. Methods Phys. Res. Sect. A 579 177

    [10]

    Wu J, Lei J R, Jiang Y, Chen Y, Rong R, Fan X Q 2013 High Power Laser Part. Beams 25 1793 (in Chinese)[吴健, 雷家荣, 蒋勇, 陈雨, 荣茹, 范晓强2013强激光与粒子束25 1793]

    [11]

    Wu J, Jiang Y, Gan L, Li M, Zou D H, Rong R, Lu Y, Li J J, Fan X Q, Lei J R 2015 High Power Laser Part. Beams 27 014004 (in Chinese)[吴健, 蒋勇, 甘雷, 李勐, 邹德慧, 荣茹, 鲁艺, 李俊杰, 范晓强, 雷家荣2015强激光与粒子束27 014004]

    [12]

    Jiang Y, Wu J, Wei J J, Fan X Q, Chen Y, Rong R, Zou D H, Li M, Bai S, Chen G, Li L 2013 Atomic Energy Sci. Technol. 47 664 (in Chinese)[蒋勇, 吴健, 韦建军, 范晓强, 陈雨, 荣茹, 邹德慧, 李勐, 柏松, 陈刚, 李理2013原子能科学技术47 664]

    [13]

    Wu J, Lei J R, Jiang Y, Chen Y, Rong R, Zou D H, Fan X Q, Chen G, Li L, Bai S 2013 Nucl. Instrum. Methods Phys. Res. Sect. A 708 72

    [14]

    Iwamoto N, Johnson C B, Hoshino N, Ito M, Tsuchida H, Kojima K, Ohshima T 2013 J. Appl. Phys. 113 143714

    [15]

    Tong W L, Sun Y J, Liu Y H, Zhao G J, Chen Z Z 2015 J. Shanghai Normal Univ. (Nat. Sci.) 44 430(in Chinese)[童武林, 孙玉俊, 刘益宏, 赵高杰, 陈之战2015上海师范大学学报(自然科学版) 44 430]

    [16]

    Liu J, Hao Y, Feng Q, Wang C, Zhang J C, Guo L L 2007 Acta Phys. Sin. 56 3483 (in Chinese)[刘杰, 郝跃, 冯倩, 王冲, 张进城, 郭亮良2007物理学报56 3483]

    [17]

    Shur M, Rumyantsev S, Levinshtein M (translated by Yang Y T, Jia H J, Duan B X) 2012 SiC Mareials and Devices, Volume I&Ⅱ (Beijing:Publishing House of Electroics Industry) pp88-92(in Chinese)[Shur M, Rumyantsev S, Levinshtein M主编(杨银堂, 贾护军, 段宝兴译) 2012碳化硅半导体材料与器件(北京:电子工业出版社)第88–92页]

    [18]

    Zha G Q, Wang T, Xu Y D, Jie W Q 2013 Physics 42 862 (in Chinese)[查钢强, 王涛, 徐亚东, 介万奇2013物理42 862]

    [19]

    Bertuccio G, Casiraghi R 2003 IEEE Trans. Nucl. Sci. 50 175

    [20]

    Lees E J, Bassford J D, Fraser W G, Horsfall B A, Vassilevski V K, Wright G N, Owens A 2007 Nucl. Instrum. Methods Phys. Res. Sect. A 578 226

    [21]

    Jiang Y, Fan X Q, Rong R, Wu J, Bai S, Li L 2012 Nucl. Electron. Detect. Technol. 32 1372 (in Chinese)[蒋勇, 范晓强, 荣茹, 吴建, 柏松, 李理2012核电子学与探测技术32 1372]

    [22]

    Mandal C K, Chaudhuri K S, Nguyen V K, Mannan A M 2014 IEEE Trans. Nucl. Sci. 61 2338

  • [1]

    Rogowski J, Kubiak A 2012 Mater. Sci. Eng. B 177 1318

    [2]

    Siad M, Vargas P C, Nkosi M, Saidi D, Souami N, Daas N, Chami C A 2009 Appl. Surf. Sci. 256 256

    [3]

    Bertuccio G, Caccia S, Puglisi D, Macera D 2011 Nucl. Instrum. Methods Phys. Res. Sect. A 652 193

    [4]

    Nava F, Vittone E, Vanni P, Verzellesi G, Fuochi G P, Lanzieri C, Glaser M 2003 Nucl. Instrum. Methods Phys. Res. Sect. A 505 645

    [5]

    Han C, Zhang Y M, Song Q W, Tang X Y, Zhang Y M, Guo H, Wang Y H 2015 Chin. Phys. B 24 117304

    [6]

    Yuan L, Zhang Y M, Song Q W, Tang X Y, Zhang Y M 2015 Chin. Phys. B 24 068502

    [7]

    Chaudhuri K S, Krishna M R, Zavalla J K, Mandal C K 2013 Nucl. Instrum. Methods Phys. Res. Sect. A 701 214

    [8]

    Mandal C K, Muzykov G P, Chaudhuri K S, Terry R J 2013 IEEE Trans. Nucl. Sci. 60 2888

    [9]

    Flammang W R, Seidel G J, Ruddy H F 2007 Nucl. Instrum. Methods Phys. Res. Sect. A 579 177

    [10]

    Wu J, Lei J R, Jiang Y, Chen Y, Rong R, Fan X Q 2013 High Power Laser Part. Beams 25 1793 (in Chinese)[吴健, 雷家荣, 蒋勇, 陈雨, 荣茹, 范晓强2013强激光与粒子束25 1793]

    [11]

    Wu J, Jiang Y, Gan L, Li M, Zou D H, Rong R, Lu Y, Li J J, Fan X Q, Lei J R 2015 High Power Laser Part. Beams 27 014004 (in Chinese)[吴健, 蒋勇, 甘雷, 李勐, 邹德慧, 荣茹, 鲁艺, 李俊杰, 范晓强, 雷家荣2015强激光与粒子束27 014004]

    [12]

    Jiang Y, Wu J, Wei J J, Fan X Q, Chen Y, Rong R, Zou D H, Li M, Bai S, Chen G, Li L 2013 Atomic Energy Sci. Technol. 47 664 (in Chinese)[蒋勇, 吴健, 韦建军, 范晓强, 陈雨, 荣茹, 邹德慧, 李勐, 柏松, 陈刚, 李理2013原子能科学技术47 664]

    [13]

    Wu J, Lei J R, Jiang Y, Chen Y, Rong R, Zou D H, Fan X Q, Chen G, Li L, Bai S 2013 Nucl. Instrum. Methods Phys. Res. Sect. A 708 72

    [14]

    Iwamoto N, Johnson C B, Hoshino N, Ito M, Tsuchida H, Kojima K, Ohshima T 2013 J. Appl. Phys. 113 143714

    [15]

    Tong W L, Sun Y J, Liu Y H, Zhao G J, Chen Z Z 2015 J. Shanghai Normal Univ. (Nat. Sci.) 44 430(in Chinese)[童武林, 孙玉俊, 刘益宏, 赵高杰, 陈之战2015上海师范大学学报(自然科学版) 44 430]

    [16]

    Liu J, Hao Y, Feng Q, Wang C, Zhang J C, Guo L L 2007 Acta Phys. Sin. 56 3483 (in Chinese)[刘杰, 郝跃, 冯倩, 王冲, 张进城, 郭亮良2007物理学报56 3483]

    [17]

    Shur M, Rumyantsev S, Levinshtein M (translated by Yang Y T, Jia H J, Duan B X) 2012 SiC Mareials and Devices, Volume I&Ⅱ (Beijing:Publishing House of Electroics Industry) pp88-92(in Chinese)[Shur M, Rumyantsev S, Levinshtein M主编(杨银堂, 贾护军, 段宝兴译) 2012碳化硅半导体材料与器件(北京:电子工业出版社)第88–92页]

    [18]

    Zha G Q, Wang T, Xu Y D, Jie W Q 2013 Physics 42 862 (in Chinese)[查钢强, 王涛, 徐亚东, 介万奇2013物理42 862]

    [19]

    Bertuccio G, Casiraghi R 2003 IEEE Trans. Nucl. Sci. 50 175

    [20]

    Lees E J, Bassford J D, Fraser W G, Horsfall B A, Vassilevski V K, Wright G N, Owens A 2007 Nucl. Instrum. Methods Phys. Res. Sect. A 578 226

    [21]

    Jiang Y, Fan X Q, Rong R, Wu J, Bai S, Li L 2012 Nucl. Electron. Detect. Technol. 32 1372 (in Chinese)[蒋勇, 范晓强, 荣茹, 吴建, 柏松, 李理2012核电子学与探测技术32 1372]

    [22]

    Mandal C K, Chaudhuri K S, Nguyen V K, Mannan A M 2014 IEEE Trans. Nucl. Sci. 61 2338

  • [1] Yang Li-Xia, Du Lei, Chen Xiao-Dong, Li Qun-Wei, Zhang Ying, Zhao Zhi-Gang, He Liang, Bao Jun-Lin, Zhuang Yi-Qi. The effect of 60Co γ-ray irradiation on the 1/f noise of Schottky barrier diodes. Acta Physica Sinica, 2008, 57(9): 5869-5874. doi: 10.7498/aps.57.5869
    [2] Lü Hong-Liang, Zhang Yi-Men, Zhang Yu-Ming. The simulation study of the tunneling effect in the breakdown of 4H-SiC pn junc tion diode. Acta Physica Sinica, 2003, 52(10): 2541-2546. doi: 10.7498/aps.52.2541
    [3] Xu Jing-Ping, Li Chun-Xia, Wu Hai-Ping. Analyses on high-temperature electrical properties of 4H-SiC n-MOSFET. Acta Physica Sinica, 2005, 54(6): 2918-2923. doi: 10.7498/aps.54.2918
    [4] Jia Ren-Xu, Zhang Yi-Men, Zhang Yu-Ming, Wang Yue-Hu. Nitrogen doped 4H-SiC homoepitaxial layers grown by CVD. Acta Physica Sinica, 2008, 57(10): 6649-6653. doi: 10.7498/aps.57.6649
    [5] Miao Rui-Xia, Zhang Yu-Ming, Tang Xiao-Yan, Zhang Yi-Men. Investigation of luminescence properties of basal plane dislocations in 4H-SiC. Acta Physica Sinica, 2011, 60(3): 037808. doi: 10.7498/aps.60.037808
    [6] Cheng Ping, Zhang Yu-Ming, Zhang Yi-Men. Effect of annealing treatment on the 386 nm and 388 nm emission peaks in unintentionally doped 4H-SiC epilayer. Acta Physica Sinica, 2011, 60(1): 017103. doi: 10.7498/aps.60.017103
    [7] Xu Chang-Fa, Yang Yin-Tang, Liu Li. . Acta Physica Sinica, 2002, 51(5): 1113-1117. doi: 10.7498/aps.51.1113
    [8] Zhai Dong-Yuan, Zhao Yi, Cai Yin-Fei, Shi Yi, Zheng You-Dou. Effect of the trench shape on the electrical properties of silicon based trench barrier schottky diode. Acta Physica Sinica, 2014, 63(12): 127201. doi: 10.7498/aps.63.127201
    [9] Li Yu-Chen, Chen Hang-Yu, Song Jian-Jun. Ge Schottky diode for improving energy conversion efficiency of the receiver of microwave wireless power transfer. Acta Physica Sinica, 2020, 69(10): 108401. doi: 10.7498/aps.69.20191415
    [10] Yang Lin-An, Zhang Yi-Men, Gong Ren-Xi, Zhang Yu-Ming. . Acta Physica Sinica, 2002, 51(1): 148-152. doi: 10.7498/aps.51.148
    [11] Xu Chong-Yang, Zhou Xue-Cheng, Wang Chang-An, Zhao Bo-Fang, Zhou Xue-Mei, Zeng Xiang-Bin, Zhang Hong-Tao. . Acta Physica Sinica, 2002, 51(2): 304-309. doi: 10.7498/aps.51.304
    [12] Liu Yu-Dong, Du Lei, Sun Peng, Chen Wen-Hao. The effect of electrostatic discharge on the I-V and low frequency noise characterization of Schottky barrier diodes. Acta Physica Sinica, 2012, 61(13): 137203. doi: 10.7498/aps.61.137203
    [13] Wang Yan-Xin, Zhang Qi-Feng, Sun Hui, Chang Yan-Ling, Wu Jin-Lei. Fabrication of ZnO nanowire-based diodes and their light-emitting properties. Acta Physica Sinica, 2008, 57(2): 1141-1144. doi: 10.7498/aps.57.1141
    [14] Liu Jie, Hao Yue, Feng Qian, Wang Chong, Zhang Jin-Cheng, Guo Liang-Liang. Characterization of Ni/Au GaN Schottky contact base on I-V-T and C-V-T measurements. Acta Physica Sinica, 2007, 56(6): 3483-3487. doi: 10.7498/aps.56.3483
    [15] Temperature dependent characteristics of Ni/Au vertical Schottky diode based on mechanically exfoliated beta-Ga2O3 single crystal. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20200424
    [16] Zhang Lin, Han Chao, Ma Yong-Ji, Zhang Yi-Men, Zhang Yu-Ming. Gamma-ray radiation effect on Ni/4H-SiC SBD. Acta Physica Sinica, 2009, 58(4): 2737-2741. doi: 10.7498/aps.58.2737
    [17] Zhang Lin, Xiao Jian, Qiu Yang-Zhang, Cheng Hong-Liang. Radition effect on Ti/4H-SiC SBD of gamma-ray,electrons and neutrons. Acta Physica Sinica, 2011, 60(5): 056106. doi: 10.7498/aps.60.056106
    [18] Tang Xiao-Yan, Dai Xiao-Wei, Zhang Yu-Ming, Zhang Yi-Men. Study of the effect of lithography deviation on 4H-SiC floating junction junction barrier Schottky diode. Acta Physica Sinica, 2012, 61(8): 088501. doi: 10.7498/aps.61.088501
    [19] LIN HONG-YI. AN INVESTIGATION OF THE IMPURITY PROFILE OF THE 4mm BAND SILICON AVALANCHE DIODE BY MEANS OF THE SCHOTTKY BARRIER CHARACTERISTICS. Acta Physica Sinica, 1978, 160(3): 291-302. doi: 10.7498/aps.27.291
    [20] Du Ke-Ming, Zhang Heng-Li, Yan Ying. Efficient diode stack end-pumped continuous-wave Nd∶YVO4 slab lasers. Acta Physica Sinica, 2008, 57(11): 6982-6986. doi: 10.7498/aps.57.6982
  • Citation:
Metrics
  • Abstract views:  661
  • PDF Downloads:  280
  • Cited By: 0
Publishing process
  • Received Date:  12 May 2016
  • Accepted Date:  29 July 2016
  • Published Online:  20 October 2016

-ray detector based on n-type 4H-SiC Schottky barrier diode

    Corresponding author: Du Yuan-Yuan, duyuanyuan@ihep.ac.cn
  • 1. Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
Fund Project:  Project supported by the National Natural Science Foundation of China (Grant No. 11203026).

Abstract: Silicon carbide (SiC) is a wide band-gap, high-temperature-resistant, and radiation-resistant semiconducting material, which can be used as a radiation detector material in harsh environments such as high radiation background and high temperatures. Schottky barrier diode radiation detectors are fabricated using 100 upm-thick n-type 4H-SiC epitaxial layers for low energy -ray detection. The spectrum responses of 4H-SiC Schottky barrier detectors are investigated by irradiation of -ray from 241Am source. Schottky diodes are prepared by magnetron-sputtering 100 nm-thick nickel on epitaxial surface (Si face) to obtain Schottky contact and Ni/Au on substrate surface (C face) to obtain Ohmic back contact, respectively. Room temperature current-voltage (I-V) and capacitance-voltage (C-V) curves are measured to study the properties of Schottky diodes. Ohmic characteristic measurement shows that the Ohmic contact is formed after annealing in a temperature range of 900-1050℃, and the lowest specific contact resistivity of 2.5510-5 cm2 is obtained after annealing at 1050℃. The forward I-V curve reveals that the Schottky barrier height and the ideality factor are 1.617 eV and 1.127, respectively, indicating that the main current transportation process is the thermal electron emission. From the C-V curve, besides the net dopant concentration being inferred to be 2.9031014 cm-3, the profile of the free carrier concentration in epitaxial layer is also studied. A comparision of the reverse I-V curves of SiC Schottky diodes with different epitaxial layer thickness shows that the diode with 100 upm-thick epitaxial layer has a constant reverse leakage current when the bias voltage is less than 400 V, showing good rectification characteristics. By applying a reverse bias of 500 V, the diode has a leakage current of 2.11 nA, exhibiting a relatively high breakdown voltage. The depletion layer width of SiC detector is calculated to be 94.4 m at 500 V, indicating that the epitaxial layer is almost fully depleted. The signal of SiC detector through preamplifier displays a relatively low amplitude pulse (15 mV). A typical -ray spectrum response from SiC detector shows 9.49% (5.65 keV) energy resolution for 59.5 keV with a reverse bias of 300 V. The potential causes of poor count rate and energy resolution of fabricated detectors are analyzed in this article. The lower count rate is mainly caused by the narrow depletion layer, resulting in fewer photons deposited in sensitive region which can generate carriers. The poor energy resolution of SiC detector can be attributed to the electronic noise of read-out circuit, the pre-match amplifier circuit for detector needs to be improved, in addition, the extra defects existing in detector caused by increasing thickness of epitaxial layer can also deteriorate the detector performance.

Reference (22)

Catalog

    /

    返回文章
    返回