Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Finite element analysis and experimental study on electrical damage of silicon photodiode induced by millisecond pulse laser

Zhao Hong-Yu Wang Di Wei Zhi Jin Guang-Yong

Finite element analysis and experimental study on electrical damage of silicon photodiode induced by millisecond pulse laser

Zhao Hong-Yu, Wang Di, Wei Zhi, Jin Guang-Yong
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In this paper, based on the thermal elasto-plastic constitutive theory and the equivalent specific heat method, the electrical damage in the silicon-based positive-intrinsic-negative (PIN) photodiode irradiated by millisecond (ms)-pulsed laser is investigated. On condition that the internal material of the photodiode is isotropic and threelayer structure of the P-I-N satisfying temperature continuity and heat flow balance, a two-dimensional (2D) simulation axisymmetric model for silicon-based PIN photodiode irradiated by ms-pulsed laser is built. The thermal and stress field distribution are simulated in the silicon-based PIN photodiode irradiated by the Nd:YAG ms-pulsed laser at 1064 nm through using the finite element simulation software. At the same time, electrical parameters before and after the experiment of the silicon-based PIN photodiode irradiated by pulsed laser are measured. The experimental results show that the surface is melted and ablated gradually with the increase of temperature in the high energy pulsed laser, and there is a gradient change for the temperature in spatial distribution. With the increase of laser energy density, photoelectric detector shows the temperature rise phenomenon and damage effect is more obvious. When the tensile stress or compressive stress is greater than 1.7 GPa, the photosensitive surface and the silicon lattice are damaged with the changes of thermal and stress fields. Bond cleavage can change the photogenerated carrier transport channel, and the transport time can be longer. In this process, the photogenerated electron-hole pairs are readily recombined, carrier lifetime decrease and carrier concentration increase, which leads to the increase of the dark current and the decrease of the responsivity. Eventually the performance of photodetector detection is reduced. Through comprehensive comparison between experiment and simulation, one can confirm that this theoretical model has a considerable level of reliability. The conclusion we can draw is that the threshold of electrical damage is 1.7 GPa. So the control of annealing temperature is extremely important for the process of making PIN photodiode. Preventing the lattice damage of the material can improve the product yield rate. In addition, from the point of view of the use of products, the stability of the working environment can extend the service life of products, and the detection accuracy is guaranteed. Conclusively, the results in this paper establish the foundation to investigate the electrical damage mechanism in the silicon-based PIN photodiode irradiated by ms-pulsed laser.
      Corresponding author: Jin Guang-Yong, jgycust@163.com
    • Funds: Project supported by science and technology department of Jilin Province in China (Grant No. 20150622011JC).
    [1]

    Xu L J, Cai H X, Li C L, Tan Y, Jin G Y, Zhang X H 2013 Optik 124 225

    [2]

    Giuliani J F, Marquardt C L 1974 J. Appl. Phys. 45 4993

    [3]

    Matsuoka Y, Usami A 1974 Appl. Phys. Lett. 25 574

    [4]

    Dou X A, Sun X Q, Shao L 2013 Laser Eng. 25 117

    [5]

    Hameiri Z, Mai L, Puzzer T, Wenham S R 2011 Sol. Energ. Mat. Sol. C 95 1085

    [6]

    Watkins S E, Zhang C Z, Walser R M, Becker M F 1990 Appl. Opt. 29 827

    [7]

    Moeglin J P 2002 Opt. Laser Eng. 38 261

    [8]

    Vest R E, Grantham S 2003 Appl. Opt. 42 5054

    [9]

    Shaw P S, Gupta R, Lykke K R 2005 Appl. Opt. 44 197

    [10]

    Liu T H, Zhong H R, Lu Q S, Jiang Z F, Wang Y P 2001 Laser J. 22 5 (in Chinese) [刘天华, 钟海荣, 陆启生, 姜宗福, 王云萍 2001 激光杂志 22 5]

    [11]

    Jiang J J 2005 M. S. Thesis (Sichuan: Sichuan University) (in Chinese) [江继军2005 硕士学位论文 (四川:四川大学)]

    [12]

    Li Z W, Wang X, Shen Z H, Lu J, Ni X W 2012 Appl. Opt. 51 2759

    [13]

    Li Z W, Wang X, Shen Z H, Lu J, Ni X W 2015 Appl. Opt. 54 378

    [14]

    Wei Z 2014 M. S. Thesis (Changchun: Changchun University of Science and Technology) (in Chinese) [魏智硕士学位论文 (长春:长春理工大学)]

    [15]

    Geist J, Zalewski E F, Schaefer A R 1980 Appl. Opt. 19 3795

    [16]

    Arora V K, Dawar A L 1996 Infrared Phys. Techn. 37 245

    [17]

    Arora V K, Dawar A L 1996 Appl. Opt. 35 7061

    [18]

    Brand A A, Meyer F, Nekarda J F, Preu R 2014 Appl. Phys. A 117 237

    [19]

    Sun H Y 2006 M. S. Thesis (Changsha: Graduate School of National University of Defense Technology) (in Chinese) [孙赫颖 2006 硕士学位论文 (长沙:国防科学技术大学)]

    [20]

    Du L Y, Wu Z M, Li R, Tang F, Jiang Y D 2016 Opt. Lett 41 5031

    [21]

    Zhao F 2010 M. S. Thesis (Changchun: Changchun University of Science and Technology) (in Chinese) [赵菲 2010 硕士学位论文 (长春: 长春理工大学)]

    [22]

    Wang Y Z, Song X N 2012 Acta Phys. Sin. 61 234601 (in Chinese) [王颖泽, 宋新南 2012 物理学报 61 234601]

    [23]

    Wei Z, Jin G Y, Peng B, Zhang X H, Tan Y 2014 Acta Phys. Sin. 63 194205 (in Chinese) [魏智, 金光勇, 彭博, 张喜和, 谭永 2014 物理学报 63 194205]

    [24]

    Kumar B U, Pardoen T, Passi V, Hoshi Y, Raskin J P 2013 Appl. Phys. Lett. 102 031911

    [25]

    Kahn H, Heuer A H 2002 Science 298 1215

    [26]

    Tayagaki T, Usami N, Pan W, Hoshi Y, Ooi K, Kanemitsu Y 2012 Appl. Phys. Lett. 101 133905

  • [1]

    Xu L J, Cai H X, Li C L, Tan Y, Jin G Y, Zhang X H 2013 Optik 124 225

    [2]

    Giuliani J F, Marquardt C L 1974 J. Appl. Phys. 45 4993

    [3]

    Matsuoka Y, Usami A 1974 Appl. Phys. Lett. 25 574

    [4]

    Dou X A, Sun X Q, Shao L 2013 Laser Eng. 25 117

    [5]

    Hameiri Z, Mai L, Puzzer T, Wenham S R 2011 Sol. Energ. Mat. Sol. C 95 1085

    [6]

    Watkins S E, Zhang C Z, Walser R M, Becker M F 1990 Appl. Opt. 29 827

    [7]

    Moeglin J P 2002 Opt. Laser Eng. 38 261

    [8]

    Vest R E, Grantham S 2003 Appl. Opt. 42 5054

    [9]

    Shaw P S, Gupta R, Lykke K R 2005 Appl. Opt. 44 197

    [10]

    Liu T H, Zhong H R, Lu Q S, Jiang Z F, Wang Y P 2001 Laser J. 22 5 (in Chinese) [刘天华, 钟海荣, 陆启生, 姜宗福, 王云萍 2001 激光杂志 22 5]

    [11]

    Jiang J J 2005 M. S. Thesis (Sichuan: Sichuan University) (in Chinese) [江继军2005 硕士学位论文 (四川:四川大学)]

    [12]

    Li Z W, Wang X, Shen Z H, Lu J, Ni X W 2012 Appl. Opt. 51 2759

    [13]

    Li Z W, Wang X, Shen Z H, Lu J, Ni X W 2015 Appl. Opt. 54 378

    [14]

    Wei Z 2014 M. S. Thesis (Changchun: Changchun University of Science and Technology) (in Chinese) [魏智硕士学位论文 (长春:长春理工大学)]

    [15]

    Geist J, Zalewski E F, Schaefer A R 1980 Appl. Opt. 19 3795

    [16]

    Arora V K, Dawar A L 1996 Infrared Phys. Techn. 37 245

    [17]

    Arora V K, Dawar A L 1996 Appl. Opt. 35 7061

    [18]

    Brand A A, Meyer F, Nekarda J F, Preu R 2014 Appl. Phys. A 117 237

    [19]

    Sun H Y 2006 M. S. Thesis (Changsha: Graduate School of National University of Defense Technology) (in Chinese) [孙赫颖 2006 硕士学位论文 (长沙:国防科学技术大学)]

    [20]

    Du L Y, Wu Z M, Li R, Tang F, Jiang Y D 2016 Opt. Lett 41 5031

    [21]

    Zhao F 2010 M. S. Thesis (Changchun: Changchun University of Science and Technology) (in Chinese) [赵菲 2010 硕士学位论文 (长春: 长春理工大学)]

    [22]

    Wang Y Z, Song X N 2012 Acta Phys. Sin. 61 234601 (in Chinese) [王颖泽, 宋新南 2012 物理学报 61 234601]

    [23]

    Wei Z, Jin G Y, Peng B, Zhang X H, Tan Y 2014 Acta Phys. Sin. 63 194205 (in Chinese) [魏智, 金光勇, 彭博, 张喜和, 谭永 2014 物理学报 63 194205]

    [24]

    Kumar B U, Pardoen T, Passi V, Hoshi Y, Raskin J P 2013 Appl. Phys. Lett. 102 031911

    [25]

    Kahn H, Heuer A H 2002 Science 298 1215

    [26]

    Tayagaki T, Usami N, Pan W, Hoshi Y, Ooi K, Kanemitsu Y 2012 Appl. Phys. Lett. 101 133905

  • [1] Yang Dan, Zhang Li, Yang Sheng-Yi, Zou Bing-Suo. Low-voltage pentacene photodetector based on a vertical transistor configuration. Acta Physica Sinica, 2015, 64(10): 108503. doi: 10.7498/aps.64.108503
    [2] Liang Zhen-Jiang, Liu Hai-Xia, Niu Yan-Xiong, Yin Yi-heng. Design and performance analysis of microcavity-enhanced graphene photodetector. Acta Physica Sinica, 2016, 65(13): 138501. doi: 10.7498/aps.65.138501
    [3] Huo Wen-Juan, Xie Hong-Yun, Liang Song, Zhang Wan-Rong, Jiang Zhi-Yun, Chen Xiang, Lu Dong. Uni-traveling-carrier double heterojunction phototransistor photodetector. Acta Physica Sinica, 2013, 62(22): 228501. doi: 10.7498/aps.62.228501
    [4] Zhao De-Gang, Zhou Mei, Chang Qing-Ying. A new method to reduce the dark current of GaN based Schottky barrier ultraviolet photodetector. Acta Physica Sinica, 2008, 57(4): 2548-2553. doi: 10.7498/aps.57.2548
    [5] Xu Wen-Lan, Xiong Da-Yuan, Li Ning, Zhen Hong-Lou, Li Zhi-Feng, Lu Wei. Study of the dark current in very long wavelength quantum well infrared photodetectors. Acta Physica Sinica, 2007, 56(9): 5424-5428. doi: 10.7498/aps.56.5424
    [6] Zhang Xuan-Ni, Zhang Chun-Min, Ai Jing-Jing. The signal-to-noise ratio of the quarter beam of wind imaging polarization interferometer. Acta Physica Sinica, 2013, 62(3): 030701. doi: 10.7498/aps.62.030701
    [7] Zhao De-Gang, Zhou Mei. Effect of p-GaN layer thickness on the performance of p-i-n structure GaN ultraviolet photodetectors. Acta Physica Sinica, 2008, 57(7): 4570-4574. doi: 10.7498/aps.57.4570
    [8] Xu Shuang-Ying, Hu Lin-Hua, Li Wen-Xin, Dai Song-Yuan. Effect of interface contacts between TiO2 particles on electron transport in dye-sensitized solar cells. Acta Physica Sinica, 2011, 60(11): 116802. doi: 10.7498/aps.60.116802
    [9] Liu Hong-Mei, Yang Chun-Hua, Liu Xin, Zhang Jian-Qi, Shi Yun-Long. Noise characterization of quantum dot infrared photodetectors. Acta Physica Sinica, 2013, 62(21): 218501. doi: 10.7498/aps.62.218501
    [10] Liao Kai-Sheng, Li Zhi-Feng, Li Liang, Wang Chao, Zhou Xiao-Hao, Dai Ning, Li Ning. Interfacial barrier effects in blocked impurity band infrared detectors. Acta Physica Sinica, 2015, 64(22): 227302. doi: 10.7498/aps.64.227302
    [11] Mo Qiu-Yan, Zhao Yan-Li. Frequency responses of communication avalanche photodiodes. Acta Physica Sinica, 2011, 60(7): 072902. doi: 10.7498/aps.60.072902
    [12] YUAN HAO-XIN, LI QI-GUANG, JIANG SHAN, LU WEI, TONG FEI-MING, TANG DING-YUAN. HYDROSTATIC PRESSURE STUDIES OF DEEP LEVELS AND RELATED CURRENT MECHANISMS IN Hg1-xCdxTe n+-P PHOTODIODES. Acta Physica Sinica, 1990, 39(3): 464-471. doi: 10.7498/aps.39.464
    [13] Du Zhen-Hui, Li Jin-Yi, Qi Ru-Bin, Xu Ke-Xin, Liu Jing-Wang. Analytical model for the tuning characteristics of static, dynamic, and transient behaviors in temperature and injection current of DFB laser diodes. Acta Physica Sinica, 2011, 60(7): 074213. doi: 10.7498/aps.60.074213
    [14] LI HONG-WEI, WANG TAI-HONG. CURRENT TRANSPORT PROPERTIES OF GaAs SCHOTTKY DIODE CONTAINING InAs SELF-ASSEMBLED QUANTUM DOTS. Acta Physica Sinica, 2001, 50(2): 262-267. doi: 10.7498/aps.50.262
    [15] Zhang Hai-Yan, Wang Lin-Li, Wu Chen-Yi, Wang Yu-Rong, Yang Lei, Pan Hai-Feng, Liu Qiao-Li, Guo Xia, Tang Kai, Zhang Zhong-Ping, Wu Guang. Avalanche photodiode single-photon detector with high time stability. Acta Physica Sinica, 2020, 69(7): 074204. doi: 10.7498/aps.69.20191875
    [16] Li Bin, Yao Jian-Quan, Ding Xin, Wang Peng, Zhang Fan. Laser diode-pumped coaxial double crystals yellow laser. Acta Physica Sinica, 2011, 60(2): 024208. doi: 10.7498/aps.60.024208
    [17] Mao Ye-Fei, Zhang Heng-Li, Xu Liu, Deng Bo, Sang Si-Han, He Jing-Liang, Xing Ji-Chuan, Xin Jian-Guo, Jiang Yi. Laser diode double-end-direct-pumped slab laser with hybrid resonator. Acta Physica Sinica, 2015, 64(1): 014203. doi: 10.7498/aps.64.014203
    [18] Xiong Ling-Ling, Li Jian-Long, Lü Bai-Da. A novel method for simulating source-field distribution of diode laser. Acta Physica Sinica, 2009, 58(2): 975-979. doi: 10.7498/aps.58.975
    [19] Xue Ming-Xi, Chen Zhi-Bin, Wang Wei-Ming, Ouyang Hui-Quan, Liu Xian-Hong, Song Yan, Zhang Chao, Xiao Wen-Jian, Hou Zhang-Ya. Research on spectral peaks thermal-drifting in multi-wavelength infrared laser diode. Acta Physica Sinica, 2014, 63(15): 154206. doi: 10.7498/aps.63.154206
    [20] Shen Guang-Di, Zhang Jian-Ming, Zou De-Shu, Xu Chen, Gu Xiao-Ling. Research on effects of current spreading and optimized contact scheme for high-power GaN-based light-emitting diodes. Acta Physica Sinica, 2008, 57(1): 472-476. doi: 10.7498/aps.57.472
  • Citation:
Metrics
  • Abstract views:  695
  • PDF Downloads:  122
  • Cited By: 0
Publishing process
  • Received Date:  22 December 2016
  • Accepted Date:  06 March 2017
  • Published Online:  05 May 2017

Finite element analysis and experimental study on electrical damage of silicon photodiode induced by millisecond pulse laser

    Corresponding author: Jin Guang-Yong, jgycust@163.com
  • 1. Key Laboratory of Solid Laser Technology and Applications of Jilin Province, School of Science, Changchun University of Science and Technology, Changchun 130022, China
Fund Project:  Project supported by science and technology department of Jilin Province in China (Grant No. 20150622011JC).

Abstract: In this paper, based on the thermal elasto-plastic constitutive theory and the equivalent specific heat method, the electrical damage in the silicon-based positive-intrinsic-negative (PIN) photodiode irradiated by millisecond (ms)-pulsed laser is investigated. On condition that the internal material of the photodiode is isotropic and threelayer structure of the P-I-N satisfying temperature continuity and heat flow balance, a two-dimensional (2D) simulation axisymmetric model for silicon-based PIN photodiode irradiated by ms-pulsed laser is built. The thermal and stress field distribution are simulated in the silicon-based PIN photodiode irradiated by the Nd:YAG ms-pulsed laser at 1064 nm through using the finite element simulation software. At the same time, electrical parameters before and after the experiment of the silicon-based PIN photodiode irradiated by pulsed laser are measured. The experimental results show that the surface is melted and ablated gradually with the increase of temperature in the high energy pulsed laser, and there is a gradient change for the temperature in spatial distribution. With the increase of laser energy density, photoelectric detector shows the temperature rise phenomenon and damage effect is more obvious. When the tensile stress or compressive stress is greater than 1.7 GPa, the photosensitive surface and the silicon lattice are damaged with the changes of thermal and stress fields. Bond cleavage can change the photogenerated carrier transport channel, and the transport time can be longer. In this process, the photogenerated electron-hole pairs are readily recombined, carrier lifetime decrease and carrier concentration increase, which leads to the increase of the dark current and the decrease of the responsivity. Eventually the performance of photodetector detection is reduced. Through comprehensive comparison between experiment and simulation, one can confirm that this theoretical model has a considerable level of reliability. The conclusion we can draw is that the threshold of electrical damage is 1.7 GPa. So the control of annealing temperature is extremely important for the process of making PIN photodiode. Preventing the lattice damage of the material can improve the product yield rate. In addition, from the point of view of the use of products, the stability of the working environment can extend the service life of products, and the detection accuracy is guaranteed. Conclusively, the results in this paper establish the foundation to investigate the electrical damage mechanism in the silicon-based PIN photodiode irradiated by ms-pulsed laser.

Reference (26)

Catalog

    /

    返回文章
    返回