Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Performances of time-delay signature and bandwidth of the chaos generated by a vertical-cavity surface-emitting laser under chaotic optical injection

Su Bin-Bin Chen Jian-Jun Wu Zheng-Mao Xia Guang-Qiong

Citation:

Performances of time-delay signature and bandwidth of the chaos generated by a vertical-cavity surface-emitting laser under chaotic optical injection

Su Bin-Bin, Chen Jian-Jun, Wu Zheng-Mao, Xia Guang-Qiong
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Time-delay signature (TDS) and effective bandwidth (EBW) are two key performance indexes to evaluate a chaos signal generated by a laser system including delay-time feedback. In this paper, we propose and simulate a technical scheme to optimize the TDS and EBW of chaotic signal generated by a slave vertical-cavity surface-emitting laser (S-VCSEL) under chaotic optical injection from a master vertical-cavity surface-emitting laser (M-VCSEL), which is subjected to double external-cavity feedback. First, based on the spin-flip model of a VCSEL subjected to two double external-cavity feedback, the time series of two orthogonal polarization components (referred to as X-component (X-PC) and Y-component (Y-PC), respectively) in the M-VCSEL can be obtained. Furthermore, with the help of self-correlation function (SF) analysis method, the TDSs of X-PC and Y-PC can be evaluated. The results show that through selecting suitable system operation parameters, X-PC and Y-PC in the M-VCSEL can simultaneously output chaotic signals with equivalently average intensity and weak TDS. Under optimized operation parameters, the peak values of the SF (σ) of the chaotic signal are 0.20 for X-PC and 0.16 for Y-PC, respectively, and the EBWs of the chaotic signal are 10.72 GHz for X-PC and 10.10 GHz for Y-PC, respectively. The chaotic signals output from the M-VCSEL under optimized operation parameters are injected into the S-VCSEL for further weakening TDS and enhancing EBW. Through examining the evolution rules of TDS and EBW of polarization-resolved chaotic signals in the parameter space composed of injection strength and frequency detuning, the ranges of optimizing injection parameters are determined for achieving two-channel chaotic signals with well suppressed TDS (σ 15 GHz).
      Corresponding author: Wu Zheng-Mao, zmwu@swu.edu.cn;gqxia@swu.edu.cn ; Xia Guang-Qiong, zmwu@swu.edu.cn;gqxia@swu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61475127, 61575163, 61775184).
    [1]

    Argyris A, Syvridis D, Larger L, Annovazzi-Lodi V, Colet P, Fischer I, García-Ojalvo J, Mirasso C R, Pesquera L, Shore K A 2005 Nature 438 343

    [2]

    Li N Q, Pan W, Luo B, Yan L S, Zou X H, Jiang N, Xiang S Y 2012 IEEE Photon. Technol. Lett. 24 1072

    [3]

    Liu J, Wu Z M, Xia G Q 2009 Opt. Express 17 12619

    [4]

    Zhong D Z, Deng T, Zheng G L 2014 Acta Phys. Sin. 63 70504 (in Chinese) [钟东洲, 邓涛, 郑国梁 2014 物理学报 63 70504]

    [5]

    Lin F Y, Liu J M 2004 IEEE J. Sel. Top. Quantum Electron. 10 991

    [6]

    Oliver N, Soriano M C, Sukow D W, Fischer I 2013 IEEE J. Quantum Electron. 49 910

    [7]

    Uchida A, Amano K, Inoue M, Hirano K, Naito S, Someya H, Oowada I, Kurashige T, Shiki M, Yoshimori S, Yoshimura K, Dovis P 2008 Nat. Photon. 2 728

    [8]

    Sakuraba R, Iwakawa K, Kanno K, Uchida A 2015 Opt. Express 23 1470

    [9]

    Wang A B, Li P, Zhang J G, Zhang J Z, Li L, Wang Y C 2013 Opt. Express 21 20452

    [10]

    Rontani D, Locquet A, Sciamanna M, Citrin D S, Ortin S 2009 IEEE J. Quantum Electron. 45 879

    [11]

    Kong L Q, Wang A B, Wang H H, Wang Y C 2008 Acta Phys. Sin. 57 2266 (in Chinese) [孔令琴, 王安邦, 王海红, 王云才 2008 物理学报 57 2266]

    [12]

    Zhang L Y, Pan W, Yan L S, Luo B, Zou X H, Xiang S Y, Li N Q 2012 IEEE Photon. Technol. Lett. 24 1693

    [13]

    Hwang S K, Liu J M 2000 Opt. Commun. 183 195

    [14]

    Yan S L 2012 Acta Phys. Sin. 61 160505 (in Chinese) [颜森林 2012 物理学报 61 160505]

    [15]

    Lin F Y, Liu J M 2003 IEEE J. Quantum Electron. 39 562

    [16]

    Zhang W L, Pan W, Luo B, Li X F, Zou X H, Wang M Y 2007 Appl. Opt. 46 7262

    [17]

    Bandt C, Pompe B 2002 Phys. Rev. Lett. 88 174102

    [18]

    Guo Y Y, Wu Y, Wang Y C 2012 Chin. Opt. Lett. 10 061901

    [19]

    Short K M, Parker A T 1998 Phys. Rev. E 58 1159

    [20]

    Rontani D, Locquet A, Sciamanna M, Citrin D S 2007 Opt. Lett. 32 2960

    [21]

    Wu J G, Xia G Q, Wu Z M 2009 Opt. Express 17 20124

    [22]

    Zhu X H, Cheng M F, Deng L, Jiang X X, Ke C J, Zhang M M, Fu S N, Tang M, Shum P, Liu D M 2017 IEEE Photon. J. 9 6601009

    [23]

    Ke J X, Yi L L, Hou T T, Hu Y, Xia G Q, Hu W S 2017 IEEE Photon. J. 9 7200808

    [24]

    Iga K 2000 IEEE J. Sel. Top. Quantum Electron. 6 1201

    [25]

    Xiang S Y, Pan W, Luo B, Yan L S, Zou X H, Jiang N, Li N Q, Zhu H N 2012 IEEE Photon. Technol. Lett. 24 1267

    [26]

    Zhang X X, Zhang S H, Wu T A, Sun W Y 2016 Acta Phys. Sin. 65 214206 (in Chinese) [张晓旭, 张胜海, 吴天安, 孙巍阳 2016 物理学报 65 214206]

    [27]

    Lin H, Hong Y H, Shore K A 2014 J. Lightwave Technol. 32 1829

    [28]

    Yang X J, Chen J J, Xia G Q, Wu J G, Wu Z M 2015 Acta Phys. Sin. 64 224213 (in Chinese) [杨显杰, 陈建军, 夏光琼, 吴加贵, 吴正茂 2015 物理学报 64 224213]

    [29]

    San Miguel M, Feng Q, Moloney J V 1995 Phys. Rev. A 52 1728

    [30]

    Martin-Regalado J, Prati F, San Miguel M, Abraham N B 1997 IEEE J. Quantum Electron. 33 765

    [31]

    Xiao P, Wu Z M, Wu J G, Jiang L, Deng T, Tang X, Fan L, Xia G Q 2013 Opt. Commun. 286 339

    [32]

    Liu H J, Li N Q, Zhao Q C 2015 Appl. Opt. 54 4380

    [33]

    Sodermann M, Weinkath M, Ackemann T 2004 IEEE J. Quantum Electron. 40 97

    [34]

    Elsonbaty A, Hegazy S F, Obayya S S A 2015 IEEE J. Quantum Electron. 51 2400309

    [35]

    Lin F Y, Chao Y K, Wu T C 2012 IEEE J. Quantum Electron. 48 1010

    [36]

    Kanno K, Uchida A, Bunsen M 2016 Phys. Rev. E 93 032206

    [37]

    Zhong Z Q, Wu Z M, Wu J G, Xia G Q 2013 IEEE Photon. J. 5 1500409

  • [1]

    Argyris A, Syvridis D, Larger L, Annovazzi-Lodi V, Colet P, Fischer I, García-Ojalvo J, Mirasso C R, Pesquera L, Shore K A 2005 Nature 438 343

    [2]

    Li N Q, Pan W, Luo B, Yan L S, Zou X H, Jiang N, Xiang S Y 2012 IEEE Photon. Technol. Lett. 24 1072

    [3]

    Liu J, Wu Z M, Xia G Q 2009 Opt. Express 17 12619

    [4]

    Zhong D Z, Deng T, Zheng G L 2014 Acta Phys. Sin. 63 70504 (in Chinese) [钟东洲, 邓涛, 郑国梁 2014 物理学报 63 70504]

    [5]

    Lin F Y, Liu J M 2004 IEEE J. Sel. Top. Quantum Electron. 10 991

    [6]

    Oliver N, Soriano M C, Sukow D W, Fischer I 2013 IEEE J. Quantum Electron. 49 910

    [7]

    Uchida A, Amano K, Inoue M, Hirano K, Naito S, Someya H, Oowada I, Kurashige T, Shiki M, Yoshimori S, Yoshimura K, Dovis P 2008 Nat. Photon. 2 728

    [8]

    Sakuraba R, Iwakawa K, Kanno K, Uchida A 2015 Opt. Express 23 1470

    [9]

    Wang A B, Li P, Zhang J G, Zhang J Z, Li L, Wang Y C 2013 Opt. Express 21 20452

    [10]

    Rontani D, Locquet A, Sciamanna M, Citrin D S, Ortin S 2009 IEEE J. Quantum Electron. 45 879

    [11]

    Kong L Q, Wang A B, Wang H H, Wang Y C 2008 Acta Phys. Sin. 57 2266 (in Chinese) [孔令琴, 王安邦, 王海红, 王云才 2008 物理学报 57 2266]

    [12]

    Zhang L Y, Pan W, Yan L S, Luo B, Zou X H, Xiang S Y, Li N Q 2012 IEEE Photon. Technol. Lett. 24 1693

    [13]

    Hwang S K, Liu J M 2000 Opt. Commun. 183 195

    [14]

    Yan S L 2012 Acta Phys. Sin. 61 160505 (in Chinese) [颜森林 2012 物理学报 61 160505]

    [15]

    Lin F Y, Liu J M 2003 IEEE J. Quantum Electron. 39 562

    [16]

    Zhang W L, Pan W, Luo B, Li X F, Zou X H, Wang M Y 2007 Appl. Opt. 46 7262

    [17]

    Bandt C, Pompe B 2002 Phys. Rev. Lett. 88 174102

    [18]

    Guo Y Y, Wu Y, Wang Y C 2012 Chin. Opt. Lett. 10 061901

    [19]

    Short K M, Parker A T 1998 Phys. Rev. E 58 1159

    [20]

    Rontani D, Locquet A, Sciamanna M, Citrin D S 2007 Opt. Lett. 32 2960

    [21]

    Wu J G, Xia G Q, Wu Z M 2009 Opt. Express 17 20124

    [22]

    Zhu X H, Cheng M F, Deng L, Jiang X X, Ke C J, Zhang M M, Fu S N, Tang M, Shum P, Liu D M 2017 IEEE Photon. J. 9 6601009

    [23]

    Ke J X, Yi L L, Hou T T, Hu Y, Xia G Q, Hu W S 2017 IEEE Photon. J. 9 7200808

    [24]

    Iga K 2000 IEEE J. Sel. Top. Quantum Electron. 6 1201

    [25]

    Xiang S Y, Pan W, Luo B, Yan L S, Zou X H, Jiang N, Li N Q, Zhu H N 2012 IEEE Photon. Technol. Lett. 24 1267

    [26]

    Zhang X X, Zhang S H, Wu T A, Sun W Y 2016 Acta Phys. Sin. 65 214206 (in Chinese) [张晓旭, 张胜海, 吴天安, 孙巍阳 2016 物理学报 65 214206]

    [27]

    Lin H, Hong Y H, Shore K A 2014 J. Lightwave Technol. 32 1829

    [28]

    Yang X J, Chen J J, Xia G Q, Wu J G, Wu Z M 2015 Acta Phys. Sin. 64 224213 (in Chinese) [杨显杰, 陈建军, 夏光琼, 吴加贵, 吴正茂 2015 物理学报 64 224213]

    [29]

    San Miguel M, Feng Q, Moloney J V 1995 Phys. Rev. A 52 1728

    [30]

    Martin-Regalado J, Prati F, San Miguel M, Abraham N B 1997 IEEE J. Quantum Electron. 33 765

    [31]

    Xiao P, Wu Z M, Wu J G, Jiang L, Deng T, Tang X, Fan L, Xia G Q 2013 Opt. Commun. 286 339

    [32]

    Liu H J, Li N Q, Zhao Q C 2015 Appl. Opt. 54 4380

    [33]

    Sodermann M, Weinkath M, Ackemann T 2004 IEEE J. Quantum Electron. 40 97

    [34]

    Elsonbaty A, Hegazy S F, Obayya S S A 2015 IEEE J. Quantum Electron. 51 2400309

    [35]

    Lin F Y, Chao Y K, Wu T C 2012 IEEE J. Quantum Electron. 48 1010

    [36]

    Kanno K, Uchida A, Bunsen M 2016 Phys. Rev. E 93 032206

    [37]

    Zhong Z Q, Wu Z M, Wu J G, Xia G Q 2013 IEEE Photon. J. 5 1500409

  • [1] Yan Guan-Xin, Hao Yong-Qin, Zhang Qiu-Bo. Thermal characteristics of high-power vertical cavity surface emitting laser array. Acta Physica Sinica, 2024, 73(5): 054204. doi: 10.7498/aps.73.20231614
    [2] Mu Peng-Hua, Chen Hao, Liu Guo-Peng, Hu Guo-Si. Chaotic Time Delay Feature Cancellation and Bandwidth Enhancement in Cascaded-Coupled Nanolasers. Acta Physica Sinica, 2024, 0(0): . doi: 10.7498/aps.73.20231643
    [3] Pang Shuang, Feng Yu-Ling, Yu Ping, Yao Zhi-Hai. Chaotic characteristics of output light from semiconductor laser with self-chaotic phase modulation and optical feedback. Acta Physica Sinica, 2022, 71(15): 150502. doi: 10.7498/aps.71.20220204
    [4] Zhang Yi-Ning, Feng Yu-Ling, Wang Xiao-Qian, Zhao Zhen-Ming, Gao Chao, Yao Zhi-Hai. Time delay signature and bandwidth of chaotic laser output from semiconductor laser. Acta Physica Sinica, 2020, 69(9): 090501. doi: 10.7498/aps.69.20191881
    [5] Li Zeng, Feng Yu-Ling, Wang Xiao-Qian, Yao Zhi-Hai. Time delay characteristics and bandwidth of chaotic laser from semiconductor laser. Acta Physica Sinica, 2018, 67(14): 140501. doi: 10.7498/aps.67.20180035
    [6] Qi Jun-Feng, Zhong Zhu-Qiang, Wang Guang-Na, Xia Guang-Qiong, Wu Zheng-Mao. Characteristics of chaotic output from a Gaussian apodized fiber Bragg grating external-cavity semiconductor laser. Acta Physica Sinica, 2017, 66(24): 244207. doi: 10.7498/aps.66.244207
    [7] Yang Feng, Tang Xi, Zhong Zhu-Qiang, Xia Guang-Qiong, Wu Zheng-Mao. Generations of multi-channel high-quality chaotic signals based on a ring system composed of polarization rotated coupled 1550 nm vertical-cavity surface-emitting lasers. Acta Physica Sinica, 2016, 65(19): 194207. doi: 10.7498/aps.65.194207
    [8] Liu Qing-Xi, Pan Wei, Zhang Li-Yue, Li Nian-Qiang, Yan Juan. Chaotic randomness of mutually coupled vertical-cavity surface-emitting laser by optical injection. Acta Physica Sinica, 2015, 64(2): 024209. doi: 10.7498/aps.64.024209
    [9] Yang Xian-Jie, Chen Jian-Jun, Xia Guang-Qiong, Wu Jia-Gui, Wu Zheng-Mao. Analyses of the time-delay signature and bandwidth of the chaotic output from a master-slave vertical-cavity surface-emitting laser dynamical system. Acta Physica Sinica, 2015, 64(22): 224213. doi: 10.7498/aps.64.224213
    [10] Deng Wei, Xia Guang-Qiong, Wu Zheng-Mao. Dual-channel chaos synchronization and communication based on a vertical-cavity surface emitting laser with double optical feedback. Acta Physica Sinica, 2013, 62(16): 164209. doi: 10.7498/aps.62.164209
    [11] Mao Ming-Ming, Xu Chen, Wei Si-Min, Xie Yi-Yang, Liu Jiu-Cheng, Xu Kun. The effects of proton implant energy on threshold and output power of vertical cavity surface emitting laser. Acta Physica Sinica, 2012, 61(21): 214207. doi: 10.7498/aps.61.214207
    [12] Liu Fa, Xu Chen, Zhao Zhen-Bo, Zhou Kang, Xie Yi-Yang, Mao Ming-Ming, Wei Si-Min, Cao Tian, Sheng Guang-Di. Study on influence of oxide aperture shape on modal characteristics of VCSELs. Acta Physica Sinica, 2012, 61(5): 054203. doi: 10.7498/aps.61.054203
    [13] Hao Yong-Qin, Feng Yuan, Wang Fei, Yan Chang-Ling, Zhao Ying-Jie, Wang Xiao-Hua, Wang Yu-Xia, Jiang Hui-Lin, Gao Xin, Bo Bao-Xue. 808nm vertical-cavity surface-emitting laser with large aperture. Acta Physica Sinica, 2011, 60(6): 064201. doi: 10.7498/aps.60.064201
    [14] Yan Sen-Lin. Bandwidth enhancement of a chaotic semiconductor laser transmitter by cross-phase modulation. Acta Physica Sinica, 2010, 59(6): 3810-3816. doi: 10.7498/aps.59.3810
    [15] Yang Ling-Zhen, Qiao Zhan-Duo, Wu Yun-Qiao, Wang Yun-Cai. Study of chaotic bandwidth in erbium-doped ring fiber laser. Acta Physica Sinica, 2010, 59(6): 3965-3972. doi: 10.7498/aps.59.3965
    [16] Zhao Yan-Feng. Chaos characteristics of the semiconductor laser with double external cavity optical feedback. Acta Physica Sinica, 2009, 58(9): 6058-6062. doi: 10.7498/aps.58.6058
    [17] Yang Hao, Guo Xia, Guan Bao-Lu, Wang Tong-Xi, Shen Guang-Di. The influence of injection current on transverse mode characteristics of vertical-cavity surface-emitting lasers. Acta Physica Sinica, 2008, 57(5): 2959-2965. doi: 10.7498/aps.57.2959
    [18] Peng Hong-Ling, Han Qin, Yang Xiao-Hong, Niu Zhi-Chuan. Modulation response analysis of 1.3 μm quantum dot vertical-cavity surface-emitting lasers. Acta Physica Sinica, 2007, 56(2): 863-870. doi: 10.7498/aps.56.863
    [19] Wang Yun-Cai, Zhang Geng-Wei, Wang An-Bang, Wang Bing-Jie, Li Yan-Li, Guo Ping. Bandwidth enhancement of semiconductor laser as a chaotic transmitter by external light injection. Acta Physica Sinica, 2007, 56(8): 4372-4377. doi: 10.7498/aps.56.4372
    [20] Zhao Hong Dong, Kang ZhiLong, Wang Sheng Li, Chen Guo Ying, Zhang YiMo. Microcavity effects in the high modulation response of thevertical cavity surface emitting laser. Acta Physica Sinica, 2003, 52(1): 77-80. doi: 10.7498/aps.52.77
Metrics
  • Abstract views:  4826
  • PDF Downloads:  170
  • Cited By: 0
Publishing process
  • Received Date:  30 June 2017
  • Accepted Date:  21 July 2017
  • Published Online:  05 December 2017

/

返回文章
返回