Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Time delay characteristics and bandwidth of chaotic laser from semiconductor laser

Li Zeng Feng Yu-Ling Wang Xiao-Qian Yao Zhi-Hai

Time delay characteristics and bandwidth of chaotic laser from semiconductor laser

Li Zeng, Feng Yu-Ling, Wang Xiao-Qian, Yao Zhi-Hai
PDF
Get Citation
  • The center wavelength of the distribution feedback semiconductor laser is about 1550 nm, and it is in the lowest loss window of the optical fiber communication. A distribution feedback semiconductor laser (DFB-SL) can generate wideband chaotic signals under external disturbances such as optical feedback, optical injection, etc. Thus, due to the simple structure, DFB-SLs with the optical feedback are widely applied to many fields, including information security, lasers radar, and physical entropy sources for generating physical random numbers. However, optical feedback can cause weak periodicity in chaotic signals from the semiconductor laser, and increase the time delay characteristics of chaotic laser, moreover reduce the quality of random numbers generated by using chaotic signals. Meanwhile, to meet the needs of the current high speed and large capacity communication, the DFB-SL, which can generate wideband chaotic laser with low time delay characteristics, has received wide attention and become a hot research subject.In this paper, we present a new scheme for suppressing the time delay characteristics and investigating the bandwidth (BW) of chaotic signals from the semiconductor laser. In this scheme, we build a system that is a distribution feedback semiconductor laser with double phase modulated optical feedback (DFB-SL-DPMOF). In this system, two phase modulators driven by the pseudorandom signals are respectively added to the two optical feedback cavities to eliminate the weak periodicity of the generated chaotic signals. For this system, we numerically investigate the influence of the system parameter, such as the delay time, feedback coefficient, etc., on the time delay characteristic of the chaotic laser. In this paper, the time delay characteristic of chaotic signal is expressed by the maximum value of the time delay signature (TDS) peak of the autocorrelation function curve. Then, to illuminate the effectiveness of this system, other two systems, i.e., DFB-SL with double optical feedback (DFB-SL-DOF) and DFB-SL with single phase modulated optical feedback (DFB-SL-SPMOF) are considered. We study the suppression effect of the system on the TDS among DFB-SL-DPMOF, DFB-SL-DOF and DFB-SL-SPMOF. For these three systems, we give and analyze the simulation curves of the time delay characteristic values with the feedback coefficient and the pumping factor respectively. The results indicate that our proposed scheme has the best suppression effect. Moreover, we numerically investigate the BW of chaotic signals from DFB-SL-DPMOF based on the parameter conditions suppressing TDS effectively. The results show that BW becomes large with the pumping factor and feedback coefficient increasing, and the maximum BW value of the obtained chaotic laser is about 7.2 GHz. Therefore the effectiveness of the presented scheme is numerically clarified. And the conclusions of this paper are useful for applying the chaotic laser to the secure communication field.
      Corresponding author: Feng Yu-Ling, FYLCUST@163.com
    • Funds: Project supported by the Key Science and Technology Program of Jilin Province, China (Grant No. 20160204020GX).
    [1]

    Argyris A, Syvridis D, Larger L, Annovazzi-Lodi V, Colet P, Fischer I, García-Ojalvo J, Mirasso C R, Pesquera L, Shore K A 2005 Nature 438 343

    [2]

    Uchida A, Amano K, Inoue M, Hirano K, Naito S, Someya H, Oowada I, Kurashige T, Shiki M, Yoshimori S, Yoshimura K, Davis P 2008 Nat. Photon. 2 728

    [3]

    Reidler I, Aviad Y, Rosenbluh M, Kanter I 2009 Phys. Rev. Lett. 103 024102

    [4]

    Lin F Y, Liu J M 2004 IEEE J. Quantum Elect. 40 815

    [5]

    Wang Y C, Wang B J, Wang A B 2008 IEEE Photon. Technol. Lett. 20 1636

    [6]

    Vicente R, Dauden J, Colet P, Toral R 2005 IEEE J. Quantum Elect. 41 541

    [7]

    Jafari A, Sedghi H, Mabhouti K, Behnia S 2011 Opt. Commun. 284 3018

    [8]

    Wu J G, Xia G Q, Tang X, Lin X D, Deng T, Fan L, Wu Z M 2010 Opt. Express 18 6661

    [9]

    Rontani D, Locquet A, Sciamanna M, Citrin D S, Ortin S 2009 IEEE J. Quantum Elect. 45 879

    [10]

    Rontani D, Locquet A, Sciamanna M, Citrin D S 2007 Opt. Lett. 32 2960

    [11]

    Wu J G, Xia G Q, Tang X, Lin X D, Deng T, Fan L, Wu Z M 2010 Opt. Express 18 6661

    [12]

    Wu J G, Xia G Q, Cao L P, Wu Z M 2009 Opt. Commun. 282 3153

    [13]

    Lee M W, Rees P, Shore K A, Ortin S 2005 IEE P-Optoelectron. 152 97

    [14]

    Wang A B, Yang Y B, Wang B J, Zhang B B, Li L, Wang Y C 2013 Opt. Express 21 8701

    [15]

    Lu D, Zhong Z Q, Xia G Q, Wu Z M 2016 Acta Photon. Sin. 45 13 (in Chinese) [卢东, 钟祝强, 夏光琼, 吴正茂 2016 光子学报 45 13]

    [16]

    Xiang S, Pan W, Zhang L, Wen A, Shang L, Zhang H, Lin L 2014 Opt. Commun. 324 38

    [17]

    Wu J, Xia G, Wu Z 2009 Opt. Express 17 20124

    [18]

    Wang Y C, Zhang G W, Wang A B, Wang B J, Li Y L, Guo P 2007 Acta Phys. Sin. 56 4372 (in Chinese) [王云才, 张耕玮, 王安帮, 王冰洁, 李艳丽, 郭萍 2007 物理学报 56 4372]

    [19]

    Lang R, Kobayashi K 1980 IEEE J. Quantum Elect. 16 347

    [20]

    Gao F, Li N Q, Zhang L Y, Ouyang Y K 2016 J Quantum Opt. 22 289 (in Chinese) [高飞, 李念强, 张力月, 欧阳康 2016 量子光学学报 22 289]

    [21]

    Mikami T, Kanno K, Aoyama K, Uchida A, Ikeguchi T, Harayama T, Sunada S, Arai K, Yoshimura K, Davis P 2012 Phys. Rev. E 85 016211

    [22]

    Yang H B, Wu Z M, Tang X, Wu J G, Xia G Q 2015 Acta Phys. Sin. 64 084204 (in Chinese) [杨海波, 吴正茂, 唐曦, 吴加贵, 夏光琼 2015 物理学报 64 084204]

  • [1]

    Argyris A, Syvridis D, Larger L, Annovazzi-Lodi V, Colet P, Fischer I, García-Ojalvo J, Mirasso C R, Pesquera L, Shore K A 2005 Nature 438 343

    [2]

    Uchida A, Amano K, Inoue M, Hirano K, Naito S, Someya H, Oowada I, Kurashige T, Shiki M, Yoshimori S, Yoshimura K, Davis P 2008 Nat. Photon. 2 728

    [3]

    Reidler I, Aviad Y, Rosenbluh M, Kanter I 2009 Phys. Rev. Lett. 103 024102

    [4]

    Lin F Y, Liu J M 2004 IEEE J. Quantum Elect. 40 815

    [5]

    Wang Y C, Wang B J, Wang A B 2008 IEEE Photon. Technol. Lett. 20 1636

    [6]

    Vicente R, Dauden J, Colet P, Toral R 2005 IEEE J. Quantum Elect. 41 541

    [7]

    Jafari A, Sedghi H, Mabhouti K, Behnia S 2011 Opt. Commun. 284 3018

    [8]

    Wu J G, Xia G Q, Tang X, Lin X D, Deng T, Fan L, Wu Z M 2010 Opt. Express 18 6661

    [9]

    Rontani D, Locquet A, Sciamanna M, Citrin D S, Ortin S 2009 IEEE J. Quantum Elect. 45 879

    [10]

    Rontani D, Locquet A, Sciamanna M, Citrin D S 2007 Opt. Lett. 32 2960

    [11]

    Wu J G, Xia G Q, Tang X, Lin X D, Deng T, Fan L, Wu Z M 2010 Opt. Express 18 6661

    [12]

    Wu J G, Xia G Q, Cao L P, Wu Z M 2009 Opt. Commun. 282 3153

    [13]

    Lee M W, Rees P, Shore K A, Ortin S 2005 IEE P-Optoelectron. 152 97

    [14]

    Wang A B, Yang Y B, Wang B J, Zhang B B, Li L, Wang Y C 2013 Opt. Express 21 8701

    [15]

    Lu D, Zhong Z Q, Xia G Q, Wu Z M 2016 Acta Photon. Sin. 45 13 (in Chinese) [卢东, 钟祝强, 夏光琼, 吴正茂 2016 光子学报 45 13]

    [16]

    Xiang S, Pan W, Zhang L, Wen A, Shang L, Zhang H, Lin L 2014 Opt. Commun. 324 38

    [17]

    Wu J, Xia G, Wu Z 2009 Opt. Express 17 20124

    [18]

    Wang Y C, Zhang G W, Wang A B, Wang B J, Li Y L, Guo P 2007 Acta Phys. Sin. 56 4372 (in Chinese) [王云才, 张耕玮, 王安帮, 王冰洁, 李艳丽, 郭萍 2007 物理学报 56 4372]

    [19]

    Lang R, Kobayashi K 1980 IEEE J. Quantum Elect. 16 347

    [20]

    Gao F, Li N Q, Zhang L Y, Ouyang Y K 2016 J Quantum Opt. 22 289 (in Chinese) [高飞, 李念强, 张力月, 欧阳康 2016 量子光学学报 22 289]

    [21]

    Mikami T, Kanno K, Aoyama K, Uchida A, Ikeguchi T, Harayama T, Sunada S, Arai K, Yoshimura K, Davis P 2012 Phys. Rev. E 85 016211

    [22]

    Yang H B, Wu Z M, Tang X, Wu J G, Xia G Q 2015 Acta Phys. Sin. 64 084204 (in Chinese) [杨海波, 吴正茂, 唐曦, 吴加贵, 夏光琼 2015 物理学报 64 084204]

  • [1] Ding Ling, Wu Jia-Gui, Xia Guang-Qiong, Shen Jin-Ting, Li Neng-Yao, Wu Zheng-Mao. Suppression of time delay feedback signatures in a semiconductor laser with double optical feedback. Acta Physica Sinica, 2011, 60(1): 014210. doi: 10.7498/aps.60.014210
    [2] Qi Jun-Feng, Zhong Zhu-Qiang, Wang Guang-Na, Xia Guang-Qiong, Wu Zheng-Mao. Characteristics of chaotic output from a Gaussian apodized fiber Bragg grating external-cavity semiconductor laser. Acta Physica Sinica, 2017, 66(24): 244207. doi: 10.7498/aps.66.244207
    [3] An Ying, Du Zhen-Hui, Liu Jing-Wang, Xu Ke-Xin. A method to compensate the tuned nonlinearity of DFB diode laser in the laser self-heterodyne coherent measuring system. Acta Physica Sinica, 2012, 61(3): 034207. doi: 10.7498/aps.61.034207
    [4] Yan Sen-Lin. Bandwidth enhancement of a chaotic semiconductor laser transmitter by cross-phase modulation. Acta Physica Sinica, 2010, 59(6): 3810-3816. doi: 10.7498/aps.59.3810
    [5] Wang Yun-Cai, Zhang Geng-Wei, Wang An-Bang, Wang Bing-Jie, Li Yan-Li, Guo Ping. Bandwidth enhancement of semiconductor laser as a chaotic transmitter by external light injection. Acta Physica Sinica, 2007, 56(8): 4372-4377. doi: 10.7498/aps.56.4372
    [6] Su Bin-Bin, Chen Jian-Jun, Wu Zheng-Mao, Xia Guang-Qiong. Performances of time-delay signature and bandwidth of the chaos generated by a vertical-cavity surface-emitting laser under chaotic optical injection. Acta Physica Sinica, 2017, 66(24): 244206. doi: 10.7498/aps.66.244206
    [7] Yang Xian-Jie, Chen Jian-Jun, Xia Guang-Qiong, Wu Jia-Gui, Wu Zheng-Mao. Analyses of the time-delay signature and bandwidth of the chaotic output from a master-slave vertical-cavity surface-emitting laser dynamical system. Acta Physica Sinica, 2015, 64(22): 224213. doi: 10.7498/aps.64.224213
    [8] Zhao Yan-Feng. Chaos characteristics of the semiconductor laser with double external cavity optical feedback. Acta Physica Sinica, 2009, 58(9): 6058-6062. doi: 10.7498/aps.58.6058
    [9] Ren Ai-Hong, Liu Zheng-Ying, Zhang Rong-Zhu, Liu Jing-Lun, Sun Nian-Chun. Bandwidth in qusai-phase-matched frequency doubling. Acta Physica Sinica, 2010, 59(10): 7050-7054. doi: 10.7498/aps.59.7050
    [10] Zhu Zhang-Ming, Hao Bao-Tian, Li Ru, Yang Yin-Tang. A novel nanometer CMOS interconnect optimal model with target delay and bandwidth constraint. Acta Physica Sinica, 2010, 59(3): 1997-2003. doi: 10.7498/aps.59.1997
  • Citation:
Metrics
  • Abstract views:  178
  • PDF Downloads:  85
  • Cited By: 0
Publishing process
  • Received Date:  05 January 2018
  • Accepted Date:  23 March 2018
  • Published Online:  20 July 2018

Time delay characteristics and bandwidth of chaotic laser from semiconductor laser

    Corresponding author: Feng Yu-Ling, FYLCUST@163.com
  • 1. Department of Physics, Changchun University of Science and Technology, Changchun 130022, China
Fund Project:  Project supported by the Key Science and Technology Program of Jilin Province, China (Grant No. 20160204020GX).

Abstract: The center wavelength of the distribution feedback semiconductor laser is about 1550 nm, and it is in the lowest loss window of the optical fiber communication. A distribution feedback semiconductor laser (DFB-SL) can generate wideband chaotic signals under external disturbances such as optical feedback, optical injection, etc. Thus, due to the simple structure, DFB-SLs with the optical feedback are widely applied to many fields, including information security, lasers radar, and physical entropy sources for generating physical random numbers. However, optical feedback can cause weak periodicity in chaotic signals from the semiconductor laser, and increase the time delay characteristics of chaotic laser, moreover reduce the quality of random numbers generated by using chaotic signals. Meanwhile, to meet the needs of the current high speed and large capacity communication, the DFB-SL, which can generate wideband chaotic laser with low time delay characteristics, has received wide attention and become a hot research subject.In this paper, we present a new scheme for suppressing the time delay characteristics and investigating the bandwidth (BW) of chaotic signals from the semiconductor laser. In this scheme, we build a system that is a distribution feedback semiconductor laser with double phase modulated optical feedback (DFB-SL-DPMOF). In this system, two phase modulators driven by the pseudorandom signals are respectively added to the two optical feedback cavities to eliminate the weak periodicity of the generated chaotic signals. For this system, we numerically investigate the influence of the system parameter, such as the delay time, feedback coefficient, etc., on the time delay characteristic of the chaotic laser. In this paper, the time delay characteristic of chaotic signal is expressed by the maximum value of the time delay signature (TDS) peak of the autocorrelation function curve. Then, to illuminate the effectiveness of this system, other two systems, i.e., DFB-SL with double optical feedback (DFB-SL-DOF) and DFB-SL with single phase modulated optical feedback (DFB-SL-SPMOF) are considered. We study the suppression effect of the system on the TDS among DFB-SL-DPMOF, DFB-SL-DOF and DFB-SL-SPMOF. For these three systems, we give and analyze the simulation curves of the time delay characteristic values with the feedback coefficient and the pumping factor respectively. The results indicate that our proposed scheme has the best suppression effect. Moreover, we numerically investigate the BW of chaotic signals from DFB-SL-DPMOF based on the parameter conditions suppressing TDS effectively. The results show that BW becomes large with the pumping factor and feedback coefficient increasing, and the maximum BW value of the obtained chaotic laser is about 7.2 GHz. Therefore the effectiveness of the presented scheme is numerically clarified. And the conclusions of this paper are useful for applying the chaotic laser to the secure communication field.

Reference (22)

Catalog

    /

    返回文章
    返回