搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

混沌光注入垂直腔面发射激光器混沌输出的时延和带宽特性

苏斌斌 陈建军 吴正茂 夏光琼

混沌光注入垂直腔面发射激光器混沌输出的时延和带宽特性

苏斌斌, 陈建军, 吴正茂, 夏光琼
PDF
导出引用
  • 提出并仿真论证了利用一个双光反馈垂直腔面发射激光器(定义为主VCSEL,M-VCSEL)产生的混沌光平行单向注入到另一个VCSEL(定义为副VCSEL,S-VCSEL)使所产生的混沌信号的延时特征(TDS)和带宽特性得以优化的技术方案.首先,基于VCSELs自旋反转模型,结合自相关分析方法,通过对系统参量进行优化,可使双光反馈M-VCSEL的X偏振分量(X-PC)和Y偏振分量(Y-PC)均输出混沌信号,且两路混沌信号的平均强度相当、TDS均较弱;在此基础上,将双光反馈M-VCSEL在优化条件下得到的混沌信号平行单向注入到S-VCSEL中,以获得两路TDS得到抑制、带宽更宽的混沌信号.通过考察两个偏振分量输出混沌信号的TDS以及混沌带宽在注入强度和频率失谐构成的参数空间的演化规律,确定了系统获取两路TDS被抑制、宽带宽的混沌信号所需的注入参数范围.
      通信作者: 吴正茂, zmwu@swu.edu.cn;gqxia@swu.edu.cn ; 夏光琼, zmwu@swu.edu.cn;gqxia@swu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:61475127,61575163,61775184)资助的课题.
    [1]

    Argyris A, Syvridis D, Larger L, Annovazzi-Lodi V, Colet P, Fischer I, García-Ojalvo J, Mirasso C R, Pesquera L, Shore K A 2005 Nature 438 343

    [2]

    Li N Q, Pan W, Luo B, Yan L S, Zou X H, Jiang N, Xiang S Y 2012 IEEE Photon. Technol. Lett. 24 1072

    [3]

    Liu J, Wu Z M, Xia G Q 2009 Opt. Express 17 12619

    [4]

    Zhong D Z, Deng T, Zheng G L 2014 Acta Phys. Sin. 63 70504 (in Chinese) [钟东洲, 邓涛, 郑国梁 2014 物理学报 63 70504]

    [5]

    Lin F Y, Liu J M 2004 IEEE J. Sel. Top. Quantum Electron. 10 991

    [6]

    Oliver N, Soriano M C, Sukow D W, Fischer I 2013 IEEE J. Quantum Electron. 49 910

    [7]

    Uchida A, Amano K, Inoue M, Hirano K, Naito S, Someya H, Oowada I, Kurashige T, Shiki M, Yoshimori S, Yoshimura K, Dovis P 2008 Nat. Photon. 2 728

    [8]

    Sakuraba R, Iwakawa K, Kanno K, Uchida A 2015 Opt. Express 23 1470

    [9]

    Wang A B, Li P, Zhang J G, Zhang J Z, Li L, Wang Y C 2013 Opt. Express 21 20452

    [10]

    Rontani D, Locquet A, Sciamanna M, Citrin D S, Ortin S 2009 IEEE J. Quantum Electron. 45 879

    [11]

    Kong L Q, Wang A B, Wang H H, Wang Y C 2008 Acta Phys. Sin. 57 2266 (in Chinese) [孔令琴, 王安邦, 王海红, 王云才 2008 物理学报 57 2266]

    [12]

    Zhang L Y, Pan W, Yan L S, Luo B, Zou X H, Xiang S Y, Li N Q 2012 IEEE Photon. Technol. Lett. 24 1693

    [13]

    Hwang S K, Liu J M 2000 Opt. Commun. 183 195

    [14]

    Yan S L 2012 Acta Phys. Sin. 61 160505 (in Chinese) [颜森林 2012 物理学报 61 160505]

    [15]

    Lin F Y, Liu J M 2003 IEEE J. Quantum Electron. 39 562

    [16]

    Zhang W L, Pan W, Luo B, Li X F, Zou X H, Wang M Y 2007 Appl. Opt. 46 7262

    [17]

    Bandt C, Pompe B 2002 Phys. Rev. Lett. 88 174102

    [18]

    Guo Y Y, Wu Y, Wang Y C 2012 Chin. Opt. Lett. 10 061901

    [19]

    Short K M, Parker A T 1998 Phys. Rev. E 58 1159

    [20]

    Rontani D, Locquet A, Sciamanna M, Citrin D S 2007 Opt. Lett. 32 2960

    [21]

    Wu J G, Xia G Q, Wu Z M 2009 Opt. Express 17 20124

    [22]

    Zhu X H, Cheng M F, Deng L, Jiang X X, Ke C J, Zhang M M, Fu S N, Tang M, Shum P, Liu D M 2017 IEEE Photon. J. 9 6601009

    [23]

    Ke J X, Yi L L, Hou T T, Hu Y, Xia G Q, Hu W S 2017 IEEE Photon. J. 9 7200808

    [24]

    Iga K 2000 IEEE J. Sel. Top. Quantum Electron. 6 1201

    [25]

    Xiang S Y, Pan W, Luo B, Yan L S, Zou X H, Jiang N, Li N Q, Zhu H N 2012 IEEE Photon. Technol. Lett. 24 1267

    [26]

    Zhang X X, Zhang S H, Wu T A, Sun W Y 2016 Acta Phys. Sin. 65 214206 (in Chinese) [张晓旭, 张胜海, 吴天安, 孙巍阳 2016 物理学报 65 214206]

    [27]

    Lin H, Hong Y H, Shore K A 2014 J. Lightwave Technol. 32 1829

    [28]

    Yang X J, Chen J J, Xia G Q, Wu J G, Wu Z M 2015 Acta Phys. Sin. 64 224213 (in Chinese) [杨显杰, 陈建军, 夏光琼, 吴加贵, 吴正茂 2015 物理学报 64 224213]

    [29]

    San Miguel M, Feng Q, Moloney J V 1995 Phys. Rev. A 52 1728

    [30]

    Martin-Regalado J, Prati F, San Miguel M, Abraham N B 1997 IEEE J. Quantum Electron. 33 765

    [31]

    Xiao P, Wu Z M, Wu J G, Jiang L, Deng T, Tang X, Fan L, Xia G Q 2013 Opt. Commun. 286 339

    [32]

    Liu H J, Li N Q, Zhao Q C 2015 Appl. Opt. 54 4380

    [33]

    Sodermann M, Weinkath M, Ackemann T 2004 IEEE J. Quantum Electron. 40 97

    [34]

    Elsonbaty A, Hegazy S F, Obayya S S A 2015 IEEE J. Quantum Electron. 51 2400309

    [35]

    Lin F Y, Chao Y K, Wu T C 2012 IEEE J. Quantum Electron. 48 1010

    [36]

    Kanno K, Uchida A, Bunsen M 2016 Phys. Rev. E 93 032206

    [37]

    Zhong Z Q, Wu Z M, Wu J G, Xia G Q 2013 IEEE Photon. J. 5 1500409

  • [1]

    Argyris A, Syvridis D, Larger L, Annovazzi-Lodi V, Colet P, Fischer I, García-Ojalvo J, Mirasso C R, Pesquera L, Shore K A 2005 Nature 438 343

    [2]

    Li N Q, Pan W, Luo B, Yan L S, Zou X H, Jiang N, Xiang S Y 2012 IEEE Photon. Technol. Lett. 24 1072

    [3]

    Liu J, Wu Z M, Xia G Q 2009 Opt. Express 17 12619

    [4]

    Zhong D Z, Deng T, Zheng G L 2014 Acta Phys. Sin. 63 70504 (in Chinese) [钟东洲, 邓涛, 郑国梁 2014 物理学报 63 70504]

    [5]

    Lin F Y, Liu J M 2004 IEEE J. Sel. Top. Quantum Electron. 10 991

    [6]

    Oliver N, Soriano M C, Sukow D W, Fischer I 2013 IEEE J. Quantum Electron. 49 910

    [7]

    Uchida A, Amano K, Inoue M, Hirano K, Naito S, Someya H, Oowada I, Kurashige T, Shiki M, Yoshimori S, Yoshimura K, Dovis P 2008 Nat. Photon. 2 728

    [8]

    Sakuraba R, Iwakawa K, Kanno K, Uchida A 2015 Opt. Express 23 1470

    [9]

    Wang A B, Li P, Zhang J G, Zhang J Z, Li L, Wang Y C 2013 Opt. Express 21 20452

    [10]

    Rontani D, Locquet A, Sciamanna M, Citrin D S, Ortin S 2009 IEEE J. Quantum Electron. 45 879

    [11]

    Kong L Q, Wang A B, Wang H H, Wang Y C 2008 Acta Phys. Sin. 57 2266 (in Chinese) [孔令琴, 王安邦, 王海红, 王云才 2008 物理学报 57 2266]

    [12]

    Zhang L Y, Pan W, Yan L S, Luo B, Zou X H, Xiang S Y, Li N Q 2012 IEEE Photon. Technol. Lett. 24 1693

    [13]

    Hwang S K, Liu J M 2000 Opt. Commun. 183 195

    [14]

    Yan S L 2012 Acta Phys. Sin. 61 160505 (in Chinese) [颜森林 2012 物理学报 61 160505]

    [15]

    Lin F Y, Liu J M 2003 IEEE J. Quantum Electron. 39 562

    [16]

    Zhang W L, Pan W, Luo B, Li X F, Zou X H, Wang M Y 2007 Appl. Opt. 46 7262

    [17]

    Bandt C, Pompe B 2002 Phys. Rev. Lett. 88 174102

    [18]

    Guo Y Y, Wu Y, Wang Y C 2012 Chin. Opt. Lett. 10 061901

    [19]

    Short K M, Parker A T 1998 Phys. Rev. E 58 1159

    [20]

    Rontani D, Locquet A, Sciamanna M, Citrin D S 2007 Opt. Lett. 32 2960

    [21]

    Wu J G, Xia G Q, Wu Z M 2009 Opt. Express 17 20124

    [22]

    Zhu X H, Cheng M F, Deng L, Jiang X X, Ke C J, Zhang M M, Fu S N, Tang M, Shum P, Liu D M 2017 IEEE Photon. J. 9 6601009

    [23]

    Ke J X, Yi L L, Hou T T, Hu Y, Xia G Q, Hu W S 2017 IEEE Photon. J. 9 7200808

    [24]

    Iga K 2000 IEEE J. Sel. Top. Quantum Electron. 6 1201

    [25]

    Xiang S Y, Pan W, Luo B, Yan L S, Zou X H, Jiang N, Li N Q, Zhu H N 2012 IEEE Photon. Technol. Lett. 24 1267

    [26]

    Zhang X X, Zhang S H, Wu T A, Sun W Y 2016 Acta Phys. Sin. 65 214206 (in Chinese) [张晓旭, 张胜海, 吴天安, 孙巍阳 2016 物理学报 65 214206]

    [27]

    Lin H, Hong Y H, Shore K A 2014 J. Lightwave Technol. 32 1829

    [28]

    Yang X J, Chen J J, Xia G Q, Wu J G, Wu Z M 2015 Acta Phys. Sin. 64 224213 (in Chinese) [杨显杰, 陈建军, 夏光琼, 吴加贵, 吴正茂 2015 物理学报 64 224213]

    [29]

    San Miguel M, Feng Q, Moloney J V 1995 Phys. Rev. A 52 1728

    [30]

    Martin-Regalado J, Prati F, San Miguel M, Abraham N B 1997 IEEE J. Quantum Electron. 33 765

    [31]

    Xiao P, Wu Z M, Wu J G, Jiang L, Deng T, Tang X, Fan L, Xia G Q 2013 Opt. Commun. 286 339

    [32]

    Liu H J, Li N Q, Zhao Q C 2015 Appl. Opt. 54 4380

    [33]

    Sodermann M, Weinkath M, Ackemann T 2004 IEEE J. Quantum Electron. 40 97

    [34]

    Elsonbaty A, Hegazy S F, Obayya S S A 2015 IEEE J. Quantum Electron. 51 2400309

    [35]

    Lin F Y, Chao Y K, Wu T C 2012 IEEE J. Quantum Electron. 48 1010

    [36]

    Kanno K, Uchida A, Bunsen M 2016 Phys. Rev. E 93 032206

    [37]

    Zhong Z Q, Wu Z M, Wu J G, Xia G Q 2013 IEEE Photon. J. 5 1500409

  • [1] 杨显杰, 陈建军, 夏光琼, 吴加贵, 吴正茂. 主副垂直腔面发射激光器动力学系统混沌输出的时延特征及带宽分析. 物理学报, 2015, 64(22): 224213. doi: 10.7498/aps.64.224213
    [2] 杨峰, 唐曦, 钟祝强, 夏光琼, 吴正茂. 基于偏振旋转耦合1550 nm垂直腔面发射激光器环形系统产生多路高质量混沌信号. 物理学报, 2016, 65(19): 194207. doi: 10.7498/aps.65.194207
    [3] 杨玲珍, 乔占朵, 邬云翘, 王云才. 掺铒光纤环形激光器混沌带宽特性数值研究. 物理学报, 2010, 59(6): 3965-3972. doi: 10.7498/aps.59.3965
    [4] 颜森林. 交叉相位调制提高半导体激光器混沌载波发射机带宽方法. 物理学报, 2010, 59(6): 3810-3816. doi: 10.7498/aps.59.3810
    [5] 张依宁, 冯玉玲, 王晓茜, 赵振明, 高超, 姚治海. 半导体激光器混沌输出的延时特征和带宽. 物理学报, 2020, 69(9): 090501. doi: 10.7498/aps.69.20191881
    [6] 王云才, 张耕玮, 王安帮, 王冰洁, 李艳丽, 郭 萍. 光注入提高半导体激光器混沌载波发射机的带宽. 物理学报, 2007, 56(8): 4372-4377. doi: 10.7498/aps.56.4372
    [7] 李增, 冯玉玲, 王晓茜, 姚治海. 半导体激光器输出混沌光的延时特性和带宽. 物理学报, 2018, 67(14): 140501. doi: 10.7498/aps.67.20180035
    [8] 赵严峰. 双反馈半导体激光器的混沌特性研究. 物理学报, 2009, 58(9): 6058-6062. doi: 10.7498/aps.58.6058
    [9] 起俊丰, 钟祝强, 王广娜, 夏光琼, 吴正茂. 高斯切趾型光纤布拉格光栅外腔半导体激光器的混沌输出特性. 物理学报, 2017, 66(24): 244207. doi: 10.7498/aps.66.244207
    [10] 邓伟, 夏光琼, 吴正茂. 基于双光反馈垂直腔面发射激光器的双信道混沌同步通信. 物理学报, 2013, 62(16): 164209. doi: 10.7498/aps.62.164209
    [11] 刘庆喜, 潘炜, 张力月, 李念强, 阎娟. 基于外光注入互耦合垂直腔面发射激光器的混沌随机特性研究. 物理学报, 2015, 64(2): 024209. doi: 10.7498/aps.64.024209
    [12] 赵红东, 康志龙, 王胜利, 陈国鹰, 张以谟. 高速调制响应垂直腔面发射激光器中的微腔效应. 物理学报, 2003, 52(1): 77-80. doi: 10.7498/aps.52.77
    [13] 彭红玲, 韩 勤, 杨晓红, 牛智川. 1.3μm量子点垂直腔面发射激光器高频响应的优化设计. 物理学报, 2007, 56(2): 863-870. doi: 10.7498/aps.56.863
    [14] 杨 浩, 郭 霞, 关宝璐, 王同喜, 沈光地. 注入电流对垂直腔面发射激光器横模特性的影响. 物理学报, 2008, 57(5): 2959-2965. doi: 10.7498/aps.57.2959
    [15] 郝永芹, 冯源, 王菲, 晏长岭, 赵英杰, 王晓华, 王玉霞, 姜会林, 高欣, 薄报学. 808nm大孔径垂直腔面发射激光器研究. 物理学报, 2011, 60(6): 064201. doi: 10.7498/aps.60.064201
    [16] 刘发, 徐晨, 赵振波, 周康, 解意洋, 毛明明, 魏思民, 曹田, 沈光地. 氧化孔形状对光子晶体垂直腔面发射激光器模式的影响. 物理学报, 2012, 61(5): 054203. doi: 10.7498/aps.61.054203
    [17] 毛明明, 徐晨, 魏思民, 解意洋, 刘久澄, 许坤. 质子注入能量对垂直腔面发射激光器的阈值和功率的影响. 物理学报, 2012, 61(21): 214207. doi: 10.7498/aps.61.214207
    [18] 关宝璐, 刘欣, 江孝伟, 刘储, 徐晨. 多横模垂直腔面发射激光器及其波长特性. 物理学报, 2015, 64(16): 164203. doi: 10.7498/aps.64.164203
    [19] 周广正, 尧舜, 于洪岩, 吕朝晨, 王青, 周天宝, 李颖, 兰天, 夏宇, 郎陆广, 程立文, 董国亮, 康联鸿, 王智勇. 高速850 nm垂直腔面发射激光器的优化设计与外延生长. 物理学报, 2018, 67(10): 104205. doi: 10.7498/aps.67.20172550
    [20] 张浩, 郭星星, 项水英. 基于单向注入垂直腔面发射激光器系统的密钥分发. 物理学报, 2018, 67(20): 204202. doi: 10.7498/aps.67.20181038
  • 引用本文:
    Citation:
计量
  • 文章访问数:  751
  • PDF下载量:  122
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-06-30
  • 修回日期:  2017-07-21
  • 刊出日期:  2017-12-05

混沌光注入垂直腔面发射激光器混沌输出的时延和带宽特性

    基金项目: 

    国家自然科学基金(批准号:61475127,61575163,61775184)资助的课题.

摘要: 提出并仿真论证了利用一个双光反馈垂直腔面发射激光器(定义为主VCSEL,M-VCSEL)产生的混沌光平行单向注入到另一个VCSEL(定义为副VCSEL,S-VCSEL)使所产生的混沌信号的延时特征(TDS)和带宽特性得以优化的技术方案.首先,基于VCSELs自旋反转模型,结合自相关分析方法,通过对系统参量进行优化,可使双光反馈M-VCSEL的X偏振分量(X-PC)和Y偏振分量(Y-PC)均输出混沌信号,且两路混沌信号的平均强度相当、TDS均较弱;在此基础上,将双光反馈M-VCSEL在优化条件下得到的混沌信号平行单向注入到S-VCSEL中,以获得两路TDS得到抑制、带宽更宽的混沌信号.通过考察两个偏振分量输出混沌信号的TDS以及混沌带宽在注入强度和频率失谐构成的参数空间的演化规律,确定了系统获取两路TDS被抑制、宽带宽的混沌信号所需的注入参数范围.

English Abstract

参考文献 (37)

目录

    /

    返回文章
    返回