搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

级联耦合纳米激光器混沌时延特征消除和带宽增强

穆鹏华 陈昊 刘国鹏 胡国四

引用本文:
Citation:

级联耦合纳米激光器混沌时延特征消除和带宽增强

穆鹏华, 陈昊, 刘国鹏, 胡国四

Chaotic Time Delay Feature Cancellation and Bandwidth Enhancement in Cascaded-Coupled Nanolasers

Mu Peng-Hua, Chen Hao, Liu Guo-Peng, Hu Guo-Si
PDF
导出引用
  • 纳米激光器作为光学源的重要组成部分,其非线性动力学更是成为近年来研究的热点之一。本文针对级联耦合纳米激光器系统中时延特征和带宽特性进行了研究。引入0-1混沌测试对纳米激光器的动力学特性进行了量化,利用自相关函数分析激光器输出信号中的时延特征。仿真中,针对中间纳米激光器是否带有明显时延特征峰的两种情况进行对比分析。研究结果表明:选择合适的系统参数,可以使从纳米激光器始终输出无明显时延特征的宽带混沌信号。通过改变频率失谐参数使得中间纳米激光器存在明显的时延特征,此时从纳米激光器可以在较小的参数区间内输出时延抑制及带宽增强的混沌信号,当中间纳米激光器时延信号完全隐藏时,从纳米激光器可以在较大的参数平面上实现时延特征的抑制,同时带宽得到明显展宽。此外,还通过绘制频率失谐及注入强度下从纳米激光器输出的二维空间分布图和带宽线图,确定了纳米激光器在混沌信号下能够同时实现抑制时延特征与带宽增大的较宽参数范围。这对于实现保密性增强的混沌光通信应用提供了重要理论基础。
    As an important part of optical sources, nanolasers have a prominent impact in photonic circuit integration, and their nonlinear dynamics has become one of the hotspots of research in recent years. In this paper, we investigate the time-delay signature and bandwidth characteristics in a cascade-coupled nanolaser system. In which the master nanolaser is connected to an external feedback cavity and injected into the intermediate nanolaser and the slave nanolaser sequentially. The 0-1 chaos test is introduced to quantify the dynamics of the nanolaser, which can accurately distinguish whether the laser is in a chaotic state or not, and the autocorrelation function is used to analyze the time-delay characteristics in the laser output signal. This type of calculation has the advantages of fast operation speed, high accuracy and anti-noise robustness. The lower the autocorrelation value, the more difficult it is to extract useful information from the chaotic random sequence. The bandwidth is defined as the value where the range between DC and frequency contains 80% of the spectral power, which is only applicable to chaotic states. In the simulation, we compare and analyze the two cases for whether the intermediate nanolaser carries an obvious peak of the time-delay signature or not. The research results show that by selecting appropriate system parameters, the slave nanolaser can always output a broadband chaotic signal without obvious time-delay signature. Under the condition of a certain injection intensity, by changing the frequency detuning parameter, the intermediate nanolaser has obvious time-delay signature, and then the slave nano-laser can output chaotic signals which can suppress time-delay signature and enhance bandwidth in a small parameter interval. When the time-delay signal of the intermediate nanolaser is completely hidden, the slave nanolaser can achieve the suppression of the time-delay signature in a larger parameter plane, meanwhile the bandwidth is significantly enhanced. In addition, by plotting the two-dimensional spatial distribution diagram and bandwidth line diagram of the output from the nanolaser under frequency detuning and injection intensity, it was determined that the nanolaser can simultaneously suppress the delay characteristics and enhance the bandwidth under chaotic signals. This provides an important theoretical basis for the realisation of secrecy-enhanced chaotic optical communication applications.
  • [1]

    Li N, Susanto H, Cemlyn B, Henning I D, Adams M J 2017 Opt. Lett. 42 3494

    [2]

    Li N, Pan W, Yan L, Luo B, Xu M, Tang Y, Jiang N, Xiang S, Zhang Q 2012 J. Opt. Soc. Am. B 29 101

    [3]

    Lin F Y, Liu J M 2004 IEEE J. Select. Topics Quantum Electron. 10 991

    [4]

    Tsay H L, Wang C Y, Chen J D, Lin F Y 2020 Opt. Express 28 24037

    [5]

    Qin J, Zhao Q, Xu D, Yin H, Chang Y, Huang D 2016 Mod. Phys. Lett. B 30 1650199

    [6]

    Uchida A, Amano K, Inoue M, Hirano K, Naito S, Someya H, Oowada I, Kurashige T, Shiki M, Yoshimori S, Yoshimura K, Davis P 2008 Nature Photon 2 728

    [7]

    Rasmussen T S, Mork J 2021 Opt. Express 29 14182

    [8]

    Simpson T B, Liu J M, Gavrielides A, Kovanis V, Alsing P M 1995 Phys. Rev. A 51 4181

    [9]

    Zhang Y, Chen Q, Li S, Yu J, Xu H, Yin F, Dai Y, Xu K 2023 2023 21st International Conference on Optical Communications and Networks (ICOCN) Qufu, China, 2023-07-31 pp1–3

    [10]

    Wu J G, Xia G Q, Tang X, Lin X D, Deng T, Fan L, Wu Z M 2010 Opt. Express 18 6661

    [11]

    Jafari A, Sedghi H, Mabhouti K, Behnia S 2011 Optics Communications 2843018

    [12]

    Udaltsov V S, Goedgebuer J P, Larger L, Cuenot J B, Levy P, Rhodes W T 2003 Physics Letters A 308 54

    [13]

    Tartwijk jk G H M V, Lenstra D 1995 Quantum Semiclass. Opt. 7 87

    [14]

    Vicente R, Daudén J, Colet P, Toral R 2005 IEEE J. Quantum Electron.41 541

    [15]

    Jiang N, Wang Y, Zhao A, Liu S, Zhang Y, Chen L, Li B, Qiu K 2020 Opt. Express 28 1999

    [16]

    Zhao Q, Wang Y, Wang A 2009 Appl. Opt. 48 3515

    [17]

    Rontani D, Locquet A, Sciamanna M, Citrin D S 2007 Opt. Lett. 32 2960

    [18]

    Wu J G, Xia G Q, Wu Z M 2009 Opt. Express 17 20124

    [19]

    Sakuraba R, Kanno K, Iwakawa K, Uchida A 2013 Frontiers in Optics 2013 Orlando, Florida, 2013 ppFM3C. 4

    [20]

    Hong Y, Quirce A, Wang B, Ji S, Panajotov K, Spencer P S 2016 IEEE J. Quantum Electron. 52 1

    [21]

    Mu P, He P, Li N 2019 IEEE Access 7 11041

    [22]

    Sattar Z A, Shore K A 2015 J. Lightwave Technol. 33 3028

    [23]

    Sattar Z A, Shore K A 2015 IEEE J. Sel. Top. Quantum Electron. 21 1800106

    [24]

    Sattar Z A, Kamel N A, Shore K A 2016 IEEE J. Quantum Electron. 52 1200108

    [25]

    Han H, Shore K A 2016 IEEE J. Quantum Electron. 52 2000306

    [26]

    Elsonbaty A, Hegazy S F, Obayya S S A 2018 Opt. Laser. Eng. 107 342

    [27]

    Qu Y, Xiang S Y, Wang Y, Lin L, Wen A J, Hao Y 2019 IEEE J. Quantum Electron. 55 2000407

  • [1] 庞爽, 冯玉玲, 于萍, 姚治海. 自混沌光相位调制光反馈半导体激光器输出光的混沌特性. 物理学报, doi: 10.7498/aps.71.20220204
    [2] 蒋培, 周沛, 李念强, 穆鹏华, 李孝峰. 外场调控下的纳米激光时延隐藏及不可预测性提升. 物理学报, doi: 10.7498/aps.70.20210049
    [3] 张依宁, 冯玉玲, 王晓茜, 赵振明, 高超, 姚治海. 半导体激光器混沌输出的延时特征和带宽. 物理学报, doi: 10.7498/aps.69.20191881
    [4] 董伟, 王志斌. 改进型混合表面等离子体微腔激光器的研究. 物理学报, doi: 10.7498/aps.67.20180242
    [5] 李增, 冯玉玲, 王晓茜, 姚治海. 半导体激光器输出混沌光的延时特性和带宽. 物理学报, doi: 10.7498/aps.67.20180035
    [6] 起俊丰, 钟祝强, 王广娜, 夏光琼, 吴正茂. 高斯切趾型光纤布拉格光栅外腔半导体激光器的混沌输出特性. 物理学报, doi: 10.7498/aps.66.244207
    [7] 苏斌斌, 陈建军, 吴正茂, 夏光琼. 混沌光注入垂直腔面发射激光器混沌输出的时延和带宽特性. 物理学报, doi: 10.7498/aps.66.244206
    [8] 杨显杰, 陈建军, 夏光琼, 吴加贵, 吴正茂. 主副垂直腔面发射激光器动力学系统混沌输出的时延特征及带宽分析. 物理学报, doi: 10.7498/aps.64.224213
    [9] 王曦, 王渝红, 李兴源, 苗淼. 考虑模型不确定性和时延的静止无功补偿器自适应滑膜控制器设计. 物理学报, doi: 10.7498/aps.63.238407
    [10] 安宝冉, 刘国平. 带时延与丢包的网络化多智能体系统控制器设计. 物理学报, doi: 10.7498/aps.63.140203
    [11] 黄洪, 赵青, 焦蛟, 梁高峰, 黄小平. 深亚波长约束的表面等离子体纳米激光器研究. 物理学报, doi: 10.7498/aps.62.135201
    [12] 纪良浩, 廖晓峰, 刘群. 时延多智能体系统分组一致性分析. 物理学报, doi: 10.7498/aps.61.220202
    [13] 罗永健, 于茜, 张卫东. 参数不确定时延超混沌系统的脉冲同步方法研究. 物理学报, doi: 10.7498/aps.60.110504
    [14] 朱樟明, 郝报田, 李儒, 杨银堂. 一种基于延时和带宽约束的纳米级互连线优化模型. 物理学报, doi: 10.7498/aps.59.1997
    [15] 颜森林. 交叉相位调制提高半导体激光器混沌载波发射机带宽方法. 物理学报, doi: 10.7498/aps.59.3810
    [16] 杨玲珍, 乔占朵, 邬云翘, 王云才. 掺铒光纤环形激光器混沌带宽特性数值研究. 物理学报, doi: 10.7498/aps.59.3965
    [17] 赵严峰. 双反馈半导体激光器的混沌特性研究. 物理学报, doi: 10.7498/aps.58.6058
    [18] 高 心, 刘兴文. 统一混沌系统的时延模糊控制. 物理学报, doi: 10.7498/aps.56.84
    [19] 王云才, 张耕玮, 王安帮, 王冰洁, 李艳丽, 郭 萍. 光注入提高半导体激光器混沌载波发射机的带宽. 物理学报, doi: 10.7498/aps.56.4372
    [20] 张瑞峰, 葛春风, 王书慧, 胡智勇, 李世忱. 熔锥型全波耦合器. 物理学报, doi: 10.7498/aps.52.390
计量
  • 文章访问数:  147
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 上网日期:  2024-04-03

/

返回文章
返回