Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effect of transition metal element X (X=Mn, Fe, Co, and Ni) doping on performance of ZnO resistive memory

Guo Jia-Jun Dong Jing-Yu Kang Xin Chen Wei Zhao Xu

Effect of transition metal element X (X=Mn, Fe, Co, and Ni) doping on performance of ZnO resistive memory

Guo Jia-Jun, Dong Jing-Yu, Kang Xin, Chen Wei, Zhao Xu
PDF
Get Citation
  • Resistance random access memory (RRAM) based on resistive switching in metal oxides has attracted considerable attention as a promising candidate for next-generation nonvolatile memory due to its high operating speed, superior scalability, and low power consumption. However, some operating parameters of RRAM cannot meet the practical requirement, which impedes its commercialization. A lot of experimental results show that doping is an effective method of improving the performance of RRAM, while the study on the physical mechanism of doping is rare. It is generally believed that the formation and rupture of conducting filaments, caused by the migration of oxygen vacancies under electric field play a major role in resistive switching of metal oxide materials. In this work, the first principle calculation based on density functional theory is performed to study the effects of transition metal element X (X=Mn, Fe, Co, and Ni) doping on the migration barriers and formation energy of oxygen vacancy in ZnO. The calculation results show that the migration barriers of both the monovalent and divalent oxygen vacancy are reduced significantly by Ni doping. This result indicates that the movement of oxygen vacancies in Ni doped ZnO is easier than in undoped ZnO RRAM device, thus Ni doping is beneficial to the formation and rupture of oxygen vacancy conducting filaments. Furthermore, the calculation results show that the formation energy of the oxygen vacancy in ZnO system can be reduced by X doping, especially by Ni doping. The formation energy of the oxygen vacancy decreases from 0.854 for undoped ZnO to 0.307 eV for Ni doped ZnO. Based on the above calculated results, Ni doped and undoped ZnO RRAM device are prepared by using pulsed laser deposition method under an oxygen pressure of 2 Pa. The Ni doped ZnO RRAM device shows the optimized forming process, low operating voltage (0.24 V and 0.34 V for Set and Reset voltage), and long retention time (>104 s). Set and Reset voltage in Ni doped ZnO device decrease by 80% and 38% respectively compared with those in undoped ZnO device. It is known that the density of oxygen vacancies in the device is dependent on the oxygen pressure during preparation. The Ni doped ZnO RRAM device under a higher oxygen pressure (5 Pa) is also prepared. The Ni doped ZnO RRAM device prepared under 5 Pa oxygen pressure shows a little higher Set and Reset voltage than the device prepared under 2 Pa oxygen pressure, while the operating voltages are still lower than those of undoped ZnO RRAM. Thus, the doping effect in the ZnO system is affected by the density of oxygen vacancies in the device. Our work provides a guidance for optimizing the performance of the metal oxide based RRAM device through element doping.
      Corresponding author: Chen Wei, chen07308@hebtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11574071).
    [1]

    Yang J J, Strukov D B, Stewart D R 2013 Nat. Nanotechnol. 8 13

    [2]

    Liu D Q, Cheng H F, Zhu X, Wang N N, Zhang C Y 2014 Acta Phys. Sin. 63 187301 (in Chinese) [刘东青, 程海峰, 朱玄, 王楠楠, 张朝阳 2014 物理学报 63 187301]

    [3]

    Cao M G, Chen Y S, Sun J R, Shang D S, Liu L F, Kang J F, Shen B G 2012 Appl. Phys. Lett. 101 203502

    [4]

    Xiong Y Q, Zhou W P, Li Q, He M C, Du J, Cao Q Q, Wang D H, Du Y W 2014 Appl. Phys. Lett. 105 032410

    [5]

    Pan F, Gao S, Chen C, Song C, Zeng F 2014 Mater. Sci. Eng. R-Rep. 83 1

    [6]

    Yang C S, Shang D S, Liu N, Shi G, Shen X, Yu R C, Li Y Q, Sun Y 2017 Adv. Mater. 29 1700906

    [7]

    Waser R, Dittmann R, Staikov G, Szot K 2009 Adv. Mater. 21 2632

    [8]

    Zhang H, Liu L, Gao B, Qiu Y, Liu X, Lu J, Han R, Kang J, Yu B 2011 Appl. Phys. Lett. 98 042105

    [9]

    Liu Q, Long S B, Wang W, Zuo Q Y, Zhang S, Chen J N, Liu M 2009 IEEE Electron Device Lett. 30 1335

    [10]

    Jung K, Choi J, Kim Y, Im H, Seo S, Jung R, Kim D, Kim J S, Park B H, Hong J P 2008 J. Appl. Phys. 103 034504

    [11]

    Chen G, Song C, Chen C, Gao S, Zeng F, Pan F 2012 Adv. Mater. 24 3515

    [12]

    Chen G, Peng J J, Song C, Zeng F, Pan F 2013 J. Appl. Phys. 113 104503

    [13]

    Ren S X, Sun G W, Zhao J, Dong J Y, Wei Y, Ma Z C, Zhao X, Chen W 2014 Appl. Phys. Lett. 104 232406

    [14]

    Ren S, Dong J, Chen W, Zhang L, Guo J, Zhang L, Zhao J, Zhao X 2015 J. Appl. Phys. 118 233902

    [15]

    Ren S, Chen W, Guo J, Yang H, Zhao X 2017 J. Alloys Compd. 708 484

    [16]

    Segall M D, Philip J D L, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys.:Condens. Matter 14 2717

    [17]

    Perdew J P, Wang Y 1992 Phys. Rev. B 45 13244

    [18]

    Vanderbilt D 1990 Phys. Rev. B 41 7892

    [19]

    Zhao Q, Zhou M, Zhang W, Liu Q, Li X, Liu M, Dai Y 2013 J. Semicond. 34 032001

    [20]

    Janotti A, van de Walle C G 2007 Phys. Rev. B 76 165202

    [21]

    Ermoshin V A, Veryazov V A 1995 Phys. Status Solidi B 189 K49

    [22]

    Zhao J, Dong J Y, Zhao X, Chen W 2014 Chin. Phys. Lett. 31 057307

    [23]

    Wong H S P, Lee H Y, Yu S, Chen Y S, Wu Y, Chen P S, Lee B, Chen F T, Tsai M J 2012 Proc. IEEE 100 1951

    [24]

    Kamiya K, Yang M Y, Nagata T, Park S G, Magyari Köpe B, Chikyow T, Yamada K, Niwa M, Nishi Y, Shiraishi K 2013 Phys. Rev. B 87 155201

    [25]

    van de Walle C G, Neugebauer J 2004 J. Appl. Phys. 95 3851

  • [1]

    Yang J J, Strukov D B, Stewart D R 2013 Nat. Nanotechnol. 8 13

    [2]

    Liu D Q, Cheng H F, Zhu X, Wang N N, Zhang C Y 2014 Acta Phys. Sin. 63 187301 (in Chinese) [刘东青, 程海峰, 朱玄, 王楠楠, 张朝阳 2014 物理学报 63 187301]

    [3]

    Cao M G, Chen Y S, Sun J R, Shang D S, Liu L F, Kang J F, Shen B G 2012 Appl. Phys. Lett. 101 203502

    [4]

    Xiong Y Q, Zhou W P, Li Q, He M C, Du J, Cao Q Q, Wang D H, Du Y W 2014 Appl. Phys. Lett. 105 032410

    [5]

    Pan F, Gao S, Chen C, Song C, Zeng F 2014 Mater. Sci. Eng. R-Rep. 83 1

    [6]

    Yang C S, Shang D S, Liu N, Shi G, Shen X, Yu R C, Li Y Q, Sun Y 2017 Adv. Mater. 29 1700906

    [7]

    Waser R, Dittmann R, Staikov G, Szot K 2009 Adv. Mater. 21 2632

    [8]

    Zhang H, Liu L, Gao B, Qiu Y, Liu X, Lu J, Han R, Kang J, Yu B 2011 Appl. Phys. Lett. 98 042105

    [9]

    Liu Q, Long S B, Wang W, Zuo Q Y, Zhang S, Chen J N, Liu M 2009 IEEE Electron Device Lett. 30 1335

    [10]

    Jung K, Choi J, Kim Y, Im H, Seo S, Jung R, Kim D, Kim J S, Park B H, Hong J P 2008 J. Appl. Phys. 103 034504

    [11]

    Chen G, Song C, Chen C, Gao S, Zeng F, Pan F 2012 Adv. Mater. 24 3515

    [12]

    Chen G, Peng J J, Song C, Zeng F, Pan F 2013 J. Appl. Phys. 113 104503

    [13]

    Ren S X, Sun G W, Zhao J, Dong J Y, Wei Y, Ma Z C, Zhao X, Chen W 2014 Appl. Phys. Lett. 104 232406

    [14]

    Ren S, Dong J, Chen W, Zhang L, Guo J, Zhang L, Zhao J, Zhao X 2015 J. Appl. Phys. 118 233902

    [15]

    Ren S, Chen W, Guo J, Yang H, Zhao X 2017 J. Alloys Compd. 708 484

    [16]

    Segall M D, Philip J D L, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys.:Condens. Matter 14 2717

    [17]

    Perdew J P, Wang Y 1992 Phys. Rev. B 45 13244

    [18]

    Vanderbilt D 1990 Phys. Rev. B 41 7892

    [19]

    Zhao Q, Zhou M, Zhang W, Liu Q, Li X, Liu M, Dai Y 2013 J. Semicond. 34 032001

    [20]

    Janotti A, van de Walle C G 2007 Phys. Rev. B 76 165202

    [21]

    Ermoshin V A, Veryazov V A 1995 Phys. Status Solidi B 189 K49

    [22]

    Zhao J, Dong J Y, Zhao X, Chen W 2014 Chin. Phys. Lett. 31 057307

    [23]

    Wong H S P, Lee H Y, Yu S, Chen Y S, Wu Y, Chen P S, Lee B, Chen F T, Tsai M J 2012 Proc. IEEE 100 1951

    [24]

    Kamiya K, Yang M Y, Nagata T, Park S G, Magyari Köpe B, Chikyow T, Yamada K, Niwa M, Nishi Y, Shiraishi K 2013 Phys. Rev. B 87 155201

    [25]

    van de Walle C G, Neugebauer J 2004 J. Appl. Phys. 95 3851

  • [1] Ren Xian-Li, Zhang Wei-Wei, Wu Xiao-Yong, Wu Lu, Wang Yue-Xia. Prediction of short range order in high-entropy alloys and its effect on the electronic, magnetic and mechanical properties. Acta Physica Sinica, 2020, 69(4): 046102. doi: 10.7498/aps.69.20191671
    [2] Xu Xian-Da, Zhao Lei, Sun Wei-Feng. First-principles on the energy band mechanism for modifying conduction property of graphene nanomeshes. Acta Physica Sinica, 2020, 69(4): 047101. doi: 10.7498/aps.69.20190657
    [3] Liu Ying-Guang, Bian Yong-Qing, Han Zhong-He. Heat transport behavior of bicrystal ZnO containing tilt grain boundary. Acta Physica Sinica, 2020, 69(3): 033101. doi: 10.7498/aps.69.20190627
    [4] Zhang Zhan-Gang, Lei Zhi-Feng, Tong Teng, Li Xiao-Hui, Wang Song-Lin, Liang Tian-Jiao, Xi Kai, Peng Chao, He Yu-Juan, Huang Yun, En Yun-Fei. Comparison of neutron induced single event upsets in 14 nm FinFET and 65 nm planar static random access memory devices. Acta Physica Sinica, 2020, 69(5): 056101. doi: 10.7498/aps.69.20191209
    [5] Zhao Jian-Ning, Liu Dong-Huan, Wei Dong, Shang Xin-Chun. Thermal rectification mechanism of one-dimensional composite structure with interface thermal contact resistance. Acta Physica Sinica, 2020, 69(5): 056501. doi: 10.7498/aps.69.20191409
    [6] Diagnosis of capacitively coupled plasma driven by pulse-modulated 27.12 MHz by using an emissive probe. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191864
    [7] Wu Yu-Ming, Ding Xiao, Wang Ren, Wang Bing-Zhong. Theoretical analysis of wide-angle metamaterial absorbers based on equivalent medium theory. Acta Physica Sinica, 2020, 69(5): 054202. doi: 10.7498/aps.69.20191732
    [8] Huang Yong-Feng, Cao Huai-Xin, Wang Wen-Hua. Conjugate linear symmetry and its application to \begin{document}$ {\mathcal{P}}{\mathcal{T}} $\end{document}-symmetry quantum theory. Acta Physica Sinica, 2020, 69(3): 030301. doi: 10.7498/aps.69.20191173
    [9] Internal dynamic detection of soliton molecules in a Ti: sapphire femtosecond laser. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191989
    [10] Research on few-mode PAM regenerator based on nonlinear optical fiber loop mirror. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20191858
    [11] Li Chuang, Li Wei-Wei, Cai Li, Xie Dan, Liu Bao-Jun, Xiang Lan, Yang Xiao-Kuo, Dong Dan-Na, Liu Jia-Hao, Chen Ya-Bo. Flexible nitrogen dioxide gas sensor based on reduced graphene oxide sensing material using silver nanowire electrode. Acta Physica Sinica, 2020, 69(5): 058101. doi: 10.7498/aps.69.20191390
    [12] Liu Hou-Tong, Mao Min-Juan. An accurate inversion method of aerosol extinction coefficient about ground-based lidar without needing calibration. Acta Physica Sinica, 2019, 68(7): 074205. doi: 10.7498/aps.68.20181825
    [13] Zhang Ji-Ye, Zhang Jian-Wei, Zeng Yu-Gang, Zhang Jun, Ning Yong-Qiang, Zhang Xing, Qin Li, Liu Yun, Wang Li-Jun. Design of gain region of high-power vertical external cavity surface emitting semiconductor laser and its fabrication. Acta Physica Sinica, 2020, 69(5): 054204. doi: 10.7498/aps.69.20191787
  • Citation:
Metrics
  • Abstract views:  397
  • PDF Downloads:  189
  • Cited By: 0
Publishing process
  • Received Date:  16 November 2017
  • Accepted Date:  22 December 2017
  • Published Online:  20 March 2018

Effect of transition metal element X (X=Mn, Fe, Co, and Ni) doping on performance of ZnO resistive memory

    Corresponding author: Chen Wei, chen07308@hebtu.edu.cn
  • 1. Key Laboratory of Advanced Films of Hebei Province, College of Physics Science and Information Engineering, Hebei Normal University, Shijiazhuang 050024, China
Fund Project:  Project supported by the National Natural Science Foundation of China (Grant No. 11574071).

Abstract: Resistance random access memory (RRAM) based on resistive switching in metal oxides has attracted considerable attention as a promising candidate for next-generation nonvolatile memory due to its high operating speed, superior scalability, and low power consumption. However, some operating parameters of RRAM cannot meet the practical requirement, which impedes its commercialization. A lot of experimental results show that doping is an effective method of improving the performance of RRAM, while the study on the physical mechanism of doping is rare. It is generally believed that the formation and rupture of conducting filaments, caused by the migration of oxygen vacancies under electric field play a major role in resistive switching of metal oxide materials. In this work, the first principle calculation based on density functional theory is performed to study the effects of transition metal element X (X=Mn, Fe, Co, and Ni) doping on the migration barriers and formation energy of oxygen vacancy in ZnO. The calculation results show that the migration barriers of both the monovalent and divalent oxygen vacancy are reduced significantly by Ni doping. This result indicates that the movement of oxygen vacancies in Ni doped ZnO is easier than in undoped ZnO RRAM device, thus Ni doping is beneficial to the formation and rupture of oxygen vacancy conducting filaments. Furthermore, the calculation results show that the formation energy of the oxygen vacancy in ZnO system can be reduced by X doping, especially by Ni doping. The formation energy of the oxygen vacancy decreases from 0.854 for undoped ZnO to 0.307 eV for Ni doped ZnO. Based on the above calculated results, Ni doped and undoped ZnO RRAM device are prepared by using pulsed laser deposition method under an oxygen pressure of 2 Pa. The Ni doped ZnO RRAM device shows the optimized forming process, low operating voltage (0.24 V and 0.34 V for Set and Reset voltage), and long retention time (>104 s). Set and Reset voltage in Ni doped ZnO device decrease by 80% and 38% respectively compared with those in undoped ZnO device. It is known that the density of oxygen vacancies in the device is dependent on the oxygen pressure during preparation. The Ni doped ZnO RRAM device under a higher oxygen pressure (5 Pa) is also prepared. The Ni doped ZnO RRAM device prepared under 5 Pa oxygen pressure shows a little higher Set and Reset voltage than the device prepared under 2 Pa oxygen pressure, while the operating voltages are still lower than those of undoped ZnO RRAM. Thus, the doping effect in the ZnO system is affected by the density of oxygen vacancies in the device. Our work provides a guidance for optimizing the performance of the metal oxide based RRAM device through element doping.

Reference (25)

Catalog

    /

    返回文章
    返回