[1] |
Zhang Ning-Xi, Zhu Hui-Bing, Lin Heng, Huang Meng-Yuan. One-dimensional cellular automaton model of traffic flow considering dynamic headway. Acta Physica Sinica,
2015, 64(2): 024501.
doi: 10.7498/aps.64.024501
|
[2] |
Hu Jun, You Lei. A cellular automata model of pedestrian evacuation in three-dimensional space. Acta Physica Sinica,
2014, 63(8): 080507.
doi: 10.7498/aps.63.080507
|
[3] |
Sheng Peng, Zhao Shu-Long, Wang Jun-Feng, Zuo Hang. Study of temporary traffic bottleneck based on cellular automaton model. Acta Physica Sinica,
2010, 59(6): 3831-3840.
doi: 10.7498/aps.59.3831
|
[4] |
Mei Chao-Qun, Huang Hai-Jun, Tang Tie-Qiao. Modeling urban expressway systems with ramps and accessory roads by cellular automaton model. Acta Physica Sinica,
2009, 58(5): 3014-3021.
doi: 10.7498/aps.58.3014
|
[5] |
Ding Jian-Xun, Huang Hai-Jun, Tang Tie-Qiao. A cellular automaton model of traffic considering the dynamic evolution of velocity randomization probability. Acta Physica Sinica,
2009, 58(11): 7591-7595.
doi: 10.7498/aps.58.7591
|
[6] |
Song Yu-Rong, Jiang Guo-Ping. Research of malware propagation in complex networks based on 1-D cellular automata. Acta Physica Sinica,
2009, 58(9): 5911-5918.
doi: 10.7498/aps.58.5911
|
[7] |
Kang Rui, Peng Li-Juan, Yang Kai. One-dimensional traffic cellular automaton model with consideration of the change of driving rules. Acta Physica Sinica,
2009, 58(7): 4514-4522.
doi: 10.7498/aps.58.4514
|
[8] |
Peng Li-Juan, Kang Rui. One-dimensional cellular automaton model of traffic flow considering drivers’ features. Acta Physica Sinica,
2009, 58(2): 830-835.
doi: 10.7498/aps.58.830
|
[9] |
Mei Chao-Qun, Huang Hai-Jun, Tang Tie-Qiao. A cellular automaton model for studying the on-ramp control of highway. Acta Physica Sinica,
2008, 57(8): 4786-4793.
doi: 10.7498/aps.57.4786
|
[10] |
Guo Si-Ling, Wei Yan-Fang, Xue Yu. On the characteristics of phase transition in CA traffic models. Acta Physica Sinica,
2006, 55(7): 3336-3342.
doi: 10.7498/aps.55.3336
|
[11] |
Hua Wei, Lin Bo-Liang. One-dimensional traffic cellular automaton model with considering the vehicle moving status. Acta Physica Sinica,
2005, 54(6): 2595-2599.
doi: 10.7498/aps.54.2595
|
[12] |
Lei Li, Xue Yu, Dai Shi-Qiang. One-dimensional sensitive driving cellular automaton model for traffic flow. Acta Physica Sinica,
2003, 52(9): 2121-2126.
doi: 10.7498/aps.52.2121
|
[13] |
XUE YU, DONG LI-YUN, DAI SHI-QIANG. AN IMPROVED ONE-DIMENSIONAL CELLULAR AUTOMATON MODEL OF TRAFFIC FLOW AND THE EFFECT OF DECELERATION PROBABILITY. Acta Physica Sinica,
2001, 50(3): 445-449.
doi: 10.7498/aps.50.445
|
[14] |
Huang Ping-Hua, Kong Ling-Jiang, Liu Mu-Ren. . Acta Physica Sinica,
2001, 50(1): 30-36.
doi: 10.7498/aps.50.30
|
[15] |
Lü XIAO-YANG, KONG LING-JIANG, LIU MU-REN. ANALYSIS ON MACROSCOPIC EQUATION TO ONE-DIMENSIONAL RANDOM TRAFFIC FLOW MODELS. Acta Physica Sinica,
2001, 50(7): 1255-1259.
doi: 10.7498/aps.50.1255
|
[16] |
Yuan Jian, Ren Yong, Shan Xiuming. . Acta Physica Sinica,
2000, 49(3): 398-402.
doi: 10.7498/aps.49.398
|
[17] |
LV XIAO-YANG, LIU MU-REN, KONG LING-JING. THEORETICAL ANALYSIS AND COMPUTER EXPERIMENTS FOR 1D RANDOM TRAFFIC FLOW MODELS. Acta Physica Sinica,
1998, 47(11): 1761-1768.
doi: 10.7498/aps.47.1761
|
[18] |
CHEN LU-JUN, LIANG CHANG-HONG. TWO-PARAMETER SOLITON CELLULAR AUTOMATA. Acta Physica Sinica,
1993, 42(12): 1894-1900.
doi: 10.7498/aps.42.1894
|
[19] |
LI FU-BIN. EQUILIBRIUM AND NONEQUILIBRIUM CORRELATIONS FUNCTIONS OF A FLUID SOLVED BY CELLULAR AUTOMATA APPROACH SIMULATIONS. Acta Physica Sinica,
1992, 41(9): 1448-1451.
doi: 10.7498/aps.41.1448
|
[20] |
LI FU-BIN. CONSTITUTION OF THE MODEL OF NONEQUILIBRIUM PHASE TRANSITION BY THE CELLULAR AUTOMATA APPROACH. Acta Physica Sinica,
1992, 41(11): 1837-1841.
doi: 10.7498/aps.41.1837
|