[1] |
Ma Jun, Wu Xin-Yi, Qin Hui-Xin. Realization of synchronization between hyperchaotic systems by using a scheme of intermittent linear coupling. Acta Physica Sinica,
2013, 62(17): 170502.
doi: 10.7498/aps.62.170502
|
[2] |
Hu Wen, Li Jun-Ping, Zhang Gong, Liu Wen-Bo, Zhao Guang-Hao. The chaotic self-FM system and its FM code coupled synchronization. Acta Physica Sinica,
2012, 61(1): 010504.
doi: 10.7498/aps.61.010504
|
[3] |
Yan Sen-Lin. Optoelectronic or all-optical logic gates using chaotic semiconductor lasers using mutual coupling-feedback. Acta Physica Sinica,
2011, 60(5): 050509.
doi: 10.7498/aps.60.050509
|
[4] |
Bian Qiu-Xiang, Yao Hong-Xing. Synchronization of weighted complex networks with multi-links and nonlinear coupling. Acta Physica Sinica,
2010, 59(5): 3027-3034.
doi: 10.7498/aps.59.3027
|
[5] |
Hu Jian-Bing, Han Yan, Zhao Ling-Dong. Adaptive synchronization between different fractional hyperchaotic systems with uncertain parameters. Acta Physica Sinica,
2009, 58(3): 1441-1445.
doi: 10.7498/aps.58.1441
|
[6] |
Lü Ling, Xia Xiao-Lan. Anti-synchronization of nonlinear-coupled spatiotemporal chaotic systems. Acta Physica Sinica,
2009, 58(2): 814-818.
doi: 10.7498/aps.58.814
|
[7] |
Jing Xiao-Dan, Lü Ling. The synchronization of spatiotemporal chaos of all-to-all network using nonlinear coupling. Acta Physica Sinica,
2009, 58(11): 7539-7543.
doi: 10.7498/aps.58.7539
|
[8] |
Han Min, Niu Zhi-Qiang, Han Bing. A new approach to synchronization between two different chaotic systems with parametric perturbation. Acta Physica Sinica,
2008, 57(11): 6824-6829.
doi: 10.7498/aps.57.6824
|
[9] |
Yu Hong-Jie, Zheng Ning. Controlling chaos using half period delay-nonlinear feedback. Acta Physica Sinica,
2007, 56(7): 3782-3788.
doi: 10.7498/aps.56.3782
|
[10] |
Yan Sen-Lin, Wang Sheng-Qian. Theoretical study of cascade synchronization in chaotic lasers and chaotic repeater. Acta Physica Sinica,
2006, 55(4): 1687-1695.
doi: 10.7498/aps.55.1687
|
[11] |
Sang Xin-Zhu, Yu Chong-Xiu, Wang Kui-Ru. Experimental investigation on wavelength-tunable chaos generation and synchronization. Acta Physica Sinica,
2006, 55(11): 5728-5732.
doi: 10.7498/aps.55.5728
|
[12] |
Yao Li-Na, Gao Jin-Feng, Liao Ni-Huan. Synchronization of a class of chaotic systems using nonlinear observers. Acta Physica Sinica,
2006, 55(1): 35-41.
doi: 10.7498/aps.55.35
|
[13] |
Yan Sen-Lin. Studies on chaotic multiple-quantum-well laser synchronization via controlling phase and its application in secure communication using external chaos phase shift keying modulation. Acta Physica Sinica,
2005, 54(3): 1098-1104.
doi: 10.7498/aps.54.1098
|
[14] |
Yu Hong-Jie. Controlling chaos using time-delay nonlinear feedback. Acta Physica Sinica,
2005, 54(11): 5053-5057.
doi: 10.7498/aps.54.5053
|
[15] |
Tao Chao-Hai, Lu Jun-An. Speed feedback synchronization of a chaotic system. Acta Physica Sinica,
2005, 54(11): 5058-5061.
doi: 10.7498/aps.54.5058
|
[16] |
Ma Jun, Liao Gao-Hua, Mo Xiao-Hua, Li Wei-Xue, Zhang Ping-Wei. Hyperchaos synchronization and control using intermittent feedback. Acta Physica Sinica,
2005, 54(12): 5585-5590.
doi: 10.7498/aps.54.5585
|
[17] |
Yan Sen-Lin, Chi Ze-Ying, Chen Wen-Jian, Wang Ze-Nong. Synchronization and decoding of chaotic lasers and their optimization. Acta Physica Sinica,
2004, 53(6): 1704-1709.
doi: 10.7498/aps.53.1704
|
[18] |
ZHANG JIA-SHU, XIAO XIAN-CI. CHAOTIC SYNCHRONIZATION SECURE COMMUNICATIONS BASED ON THE EXTENDED CHAOTIC MAPS SWITCH. Acta Physica Sinica,
2001, 50(11): 2121-2125.
doi: 10.7498/aps.50.2121
|
[19] |
YANG SHI-PING, NIU YHAI-YAN, TIAN GANG, YUAN GUO-YONG, ZHANG SHAN. SYNCHRONIZING CHAOS BY DRIVING PARAMETER. Acta Physica Sinica,
2001, 50(4): 619-623.
doi: 10.7498/aps.50.619
|
[20] |
WANG TIE-BANG, QIN TUAN-FA, CHEN GUANG-ZHI. COUPLED SYNCHRONIZATION OF HYPERCHAOTIC SYSTEMS. Acta Physica Sinica,
2001, 50(10): 1851-1855.
doi: 10.7498/aps.50.1851
|