[1] |
Wang Xin-Ying, Han Min. Multivariate chaotic time series prediction using multiple kernel extreme learning machine. Acta Physica Sinica,
2015, 64(7): 070504.
doi: 10.7498/aps.64.070504
|
[2] |
Tian Zhong-Da, Gao Xian-Wen, Shi Tong. Combination kernel function least squares support vector machine for chaotic time series prediction. Acta Physica Sinica,
2014, 63(16): 160508.
doi: 10.7498/aps.63.160508
|
[3] |
Li Jun, Zhang You-Peng. Single-step and multiple-step prediction of chaotic time series using Gaussian process model. Acta Physica Sinica,
2011, 60(7): 070513.
doi: 10.7498/aps.60.070513
|
[4] |
Zhang Xian, Wang Hong-Li. Incremental regularized extreme learning machine based on Cholesky factorization and its application to time series prediction. Acta Physica Sinica,
2011, 60(11): 110201.
doi: 10.7498/aps.60.110201
|
[5] |
Liu Fu-Cai, Zhang Yan-Liu, Chen Chao. Prediction of chaotic time series based on robust fuzzy clustering. Acta Physica Sinica,
2008, 57(5): 2784-2790.
doi: 10.7498/aps.57.2784
|
[6] |
Jiang Ke-Yu, Cai Zhi-Ming, Lu Zhen-Bo. A test method for weak nonlinearity in time series. Acta Physica Sinica,
2008, 57(3): 1471-1476.
doi: 10.7498/aps.57.1471
|
[7] |
Zhang Jun-Feng, Hu Shou-Song. Chaotic time series prediction based on multi-kernel learning support vector regression. Acta Physica Sinica,
2008, 57(5): 2708-2713.
doi: 10.7498/aps.57.2708
|
[8] |
. Prediction of chaotic time series based on selective support vector machine ensemble. Acta Physica Sinica,
2007, 56(12): 6820-6827.
doi: 10.7498/aps.56.6820
|
[9] |
He Tao, Zhou Zheng-Ou. Prediction of chaotic time series based on fractal self-affinity. Acta Physica Sinica,
2007, 56(2): 693-700.
doi: 10.7498/aps.56.693
|
[10] |
Yu Zhen-Hua, Cai Yuan-Li. Prediction of chaotic time-series based on online wavelet support vector regression. Acta Physica Sinica,
2006, 55(4): 1659-1665.
doi: 10.7498/aps.55.1659
|
[11] |
Liu Fu-Cai, Sun Li-Ping, Liang Xiao-Ming. Prediction of chaotic time series based on hierarchical fuzzy-clustering. Acta Physica Sinica,
2006, 55(7): 3302-3306.
doi: 10.7498/aps.55.3302
|
[12] |
Meng Qing-Fang, Zhang Qiang, Mu Wen-Ying. A novel multi-step adaptive prediction method for chaotic time series. Acta Physica Sinica,
2006, 55(4): 1666-1671.
doi: 10.7498/aps.55.1666
|
[13] |
Ye Mei-Ying, Wang Xiao-Dong, Zhang Hao-Ran. Chaotic time series forecasting using online least squares support vector machine regression. Acta Physica Sinica,
2005, 54(6): 2568-2573.
doi: 10.7498/aps.54.2568
|
[14] |
Li Jun, Liu Jun-Hua. On the prediction of chaotic time series using a new generalized radial basis function neural networks. Acta Physica Sinica,
2005, 54(10): 4569-4577.
doi: 10.7498/aps.54.4569
|
[15] |
Cui Wan-Zhao, Zhu Chang-Chun, Bao Wen-Xing, Liu Jun-Hua. Prediction of the chaotic time series using support vector machines for fuzzy rule-based modeling. Acta Physica Sinica,
2005, 54(7): 3009-3018.
doi: 10.7498/aps.54.3009
|
[16] |
Zhang Sen, Xiao Xian-Ci. A new method of global prediction for chaotic time series based on continued fractions. Acta Physica Sinica,
2005, 54(11): 5062-5068.
doi: 10.7498/aps.54.5062
|
[17] |
Cui Wan-Zhao, Zhu Chang-Chun, Bao Wen-Xing, Liu Jun-Hua. Prediction of the chaotic time series using support vector machines. Acta Physica Sinica,
2004, 53(10): 3303-3310.
doi: 10.7498/aps.53.3303
|
[18] |
Wang Hong-Wei, Ma Guang-Fu. Prediction of chaotic time series based on fuzzy model. Acta Physica Sinica,
2004, 53(10): 3293-3297.
doi: 10.7498/aps.53.3293
|
[19] |
Tan Wen, Wang Yao-Nan, Zhou Shao-Wu, Liu Zu-Run. Prediction of the chaotic time series using neuro-fuzzy networks. Acta Physica Sinica,
2003, 52(4): 795-801.
doi: 10.7498/aps.52.795
|
[20] |
Li Chun-Gui, Pei Liu-Qing. A method for distinguishing dynamical species in chaotic time series. Acta Physica Sinica,
2003, 52(9): 2114-2120.
doi: 10.7498/aps.52.2114
|