[1] |
Shen Li-Hua, Chen Ji-Hong, Zeng Zhi-Gang, Jin Jian. Chaotic time series prediction based on robust extreme learning machine. Acta Physica Sinica,
2018, 67(3): 030501.
doi: 10.7498/aps.67.20171887
|
[2] |
Zhao Zhi-Gang, Zhang Chun-Jie, Gou Xiang-Feng, Sang Hu-Tang. Solar cell temperature prediction model of support vector machine optimized by particle swarm optimization algorithm. Acta Physica Sinica,
2015, 64(8): 088801.
doi: 10.7498/aps.64.088801
|
[3] |
Wang Xin-Ying, Han Min. Multivariate chaotic time series prediction using multiple kernel extreme learning machine. Acta Physica Sinica,
2015, 64(7): 070504.
doi: 10.7498/aps.64.070504
|
[4] |
Tian Zhong-Da, Gao Xian-Wen, Shi Tong. Combination kernel function least squares support vector machine for chaotic time series prediction. Acta Physica Sinica,
2014, 63(16): 160508.
doi: 10.7498/aps.63.160508
|
[5] |
Zhao Yong-Ping, Wang Kang-Kang. Chaotic time series prediction using add-delete mechanism based regularized extreme learning machine. Acta Physica Sinica,
2013, 62(24): 240509.
doi: 10.7498/aps.62.240509
|
[6] |
Zhao Yong-Ping, Zhang Li-Yan, Li De-Cai, Wang Li-Feng, Jiang Hong-Zhang. Chaotic time series prediction using filtering window based least squares support vector regression. Acta Physica Sinica,
2013, 62(12): 120511.
doi: 10.7498/aps.62.120511
|
[7] |
Yu Yan-Hua, Song Jun-De. Redundancy-test-based hyper-parameters selection approach for support vector machines to predict time series. Acta Physica Sinica,
2012, 61(17): 170516.
doi: 10.7498/aps.61.170516
|
[8] |
Zhang Xian, Wang Hong-Li. Selective forgetting extreme learning machine and its application to time series prediction. Acta Physica Sinica,
2011, 60(8): 080504.
doi: 10.7498/aps.60.080504
|
[9] |
Yan Xiao-Mei, Liu Ding. Control of fractional order chaotic system based on least square support vector machines. Acta Physica Sinica,
2010, 59(5): 3043-3048.
doi: 10.7498/aps.59.3043
|
[10] |
Zhang Chun-Tao, Ma Qian-Li, Peng Hong. Chaotic time series prediction based on information entropy optimized parameters of phase space reconstruction. Acta Physica Sinica,
2010, 59(11): 7623-7629.
doi: 10.7498/aps.59.7623
|
[11] |
Wang Ge-Li, Yang Pei-Cai, Mao Yu-Qing. On the application of non-stationary time series prediction based on the SVM method. Acta Physica Sinica,
2008, 57(2): 714-719.
doi: 10.7498/aps.57.714
|
[12] |
Zhang Jia-Shu, Dang Jian-Liang, Li Heng-Chao. Local support vector machine prediction of spatiotemporal chaotic time series. Acta Physica Sinica,
2007, 56(1): 67-77.
doi: 10.7498/aps.56.67
|
[13] |
. Prediction of chaotic time series based on selective support vector machine ensemble. Acta Physica Sinica,
2007, 56(12): 6820-6827.
doi: 10.7498/aps.56.6820
|
[14] |
Yu Zhen-Hua, Cai Yuan-Li. Prediction of chaotic time-series based on online wavelet support vector regression. Acta Physica Sinica,
2006, 55(4): 1659-1665.
doi: 10.7498/aps.55.1659
|
[15] |
Ye Mei-Ying. Control of chaotic system based on least squares support vector machine modeling. Acta Physica Sinica,
2005, 54(1): 30-34.
doi: 10.7498/aps.54.30
|
[16] |
Liu Han, Liu Ding, Ren Hai-Peng. Chaos control based on least square support vector machines. Acta Physica Sinica,
2005, 54(9): 4019-4025.
doi: 10.7498/aps.54.4019
|
[17] |
Ye Mei-Ying, Wang Xiao-Dong, Zhang Hao-Ran. Chaotic time series forecasting using online least squares support vector machine regression. Acta Physica Sinica,
2005, 54(6): 2568-2573.
doi: 10.7498/aps.54.2568
|
[18] |
Cui Wan-Zhao, Zhu Chang-Chun, Bao Wen-Xing, Liu Jun-Hua. Prediction of the chaotic time series using support vector machines for fuzzy rule-based modeling. Acta Physica Sinica,
2005, 54(7): 3009-3018.
doi: 10.7498/aps.54.3009
|
[19] |
Yan Sen-Lin, Chi Ze-Ying, Chen Wen-Jian, Wang Ze-Nong. Synchronization and decoding of chaotic lasers and their optimization. Acta Physica Sinica,
2004, 53(6): 1704-1709.
doi: 10.7498/aps.53.1704
|
[20] |
Cui Wan-Zhao, Zhu Chang-Chun, Bao Wen-Xing, Liu Jun-Hua. Prediction of the chaotic time series using support vector machines. Acta Physica Sinica,
2004, 53(10): 3303-3310.
doi: 10.7498/aps.53.3303
|