[1] |
Zhang Yi-Jun, Mu Xiao-Dong, Guo Le-Meng, Zhang Peng, Zhao Dao, Bai Wen-Hua. A support vector machine training scheme based on quantum circuits. Acta Physica Sinica,
2023, 72(7): 070302.
doi: 10.7498/aps.72.20222003
|
[2] |
Song Kun, Gao Tai-Chang, Liu Xi-Chuan, Yin Min, Xue Yang. Method and experiment of rainfall intensity inversion using a microwave link based on support vector machine. Acta Physica Sinica,
2015, 64(24): 244301.
doi: 10.7498/aps.64.244301
|
[3] |
Zhao Zhi-Gang, Zhang Chun-Jie, Gou Xiang-Feng, Sang Hu-Tang. Solar cell temperature prediction model of support vector machine optimized by particle swarm optimization algorithm. Acta Physica Sinica,
2015, 64(8): 088801.
doi: 10.7498/aps.64.088801
|
[4] |
Tang Zhou-Jin, Peng Tao, Wang Wen-Bo. A local least square support vector machine prediction algorithm of small scale network traffic based on correlation analysis. Acta Physica Sinica,
2014, 63(13): 130504.
doi: 10.7498/aps.63.130504
|
[5] |
Zhao Yong-Ping, Zhang Li-Yan, Li De-Cai, Wang Li-Feng, Jiang Hong-Zhang. Chaotic time series prediction using filtering window based least squares support vector regression. Acta Physica Sinica,
2013, 62(12): 120511.
doi: 10.7498/aps.62.120511
|
[6] |
Xing HongYan, Qi ZhengDong, Xu Wei. Weak signal estimation in chaotic clutter using selective support vector machine ensemble. Acta Physica Sinica,
2012, 61(24): 240504.
doi: 10.7498/aps.61.240504
|
[7] |
Wang Fang-Fang, Zhang Ye-Rong. An electromagnetic inverse scattering approach based on support vector machine. Acta Physica Sinica,
2012, 61(8): 084101.
doi: 10.7498/aps.61.084101
|
[8] |
Yu Yan-Hua, Song Jun-De. Redundancy-test-based hyper-parameters selection approach for support vector machines to predict time series. Acta Physica Sinica,
2012, 61(17): 170516.
doi: 10.7498/aps.61.170516
|
[9] |
Zhong Min, Tang Guo-Ning. Suppressing spiral waves and spatiotemporal chaos in cardiac tissue using local feedback. Acta Physica Sinica,
2010, 59(3): 1593-1599.
doi: 10.7498/aps.59.1593
|
[10] |
Yan Xiao-Mei, Liu Ding. Control of fractional order chaotic system based on least square support vector machines. Acta Physica Sinica,
2010, 59(5): 3043-3048.
doi: 10.7498/aps.59.3043
|
[11] |
Cai Cong-Zhong, Pei Jun-Fang, Wen Yu-Feng, Zhu Xing-Jian, Xiao Ting-Ting. Density prediction of selective laser sintering parts based on support vector regression. Acta Physica Sinica,
2009, 58(13): 8-S14.
doi: 10.7498/aps.58.8
|
[12] |
Meng Qing-Fang, Peng Yu-Hua, Qu Huai-Jing, Han Min. The neighbor point selection method for local prediction based on information criterion. Acta Physica Sinica,
2008, 57(3): 1423-1430.
doi: 10.7498/aps.57.1423
|
[13] |
Wang Ge-Li, Yang Pei-Cai, Mao Yu-Qing. On the application of non-stationary time series prediction based on the SVM method. Acta Physica Sinica,
2008, 57(2): 714-719.
doi: 10.7498/aps.57.714
|
[14] |
Zhang Jun-Feng, Hu Shou-Song. Chaotic time series prediction based on multi-kernel learning support vector regression. Acta Physica Sinica,
2008, 57(5): 2708-2713.
doi: 10.7498/aps.57.2708
|
[15] |
. Prediction of chaotic time series based on selective support vector machine ensemble. Acta Physica Sinica,
2007, 56(12): 6820-6827.
doi: 10.7498/aps.56.6820
|
[16] |
Ye Mei-Ying. Control of chaotic system based on least squares support vector machine modeling. Acta Physica Sinica,
2005, 54(1): 30-34.
doi: 10.7498/aps.54.30
|
[17] |
Liu Han, Liu Ding, Ren Hai-Peng. Chaos control based on least square support vector machines. Acta Physica Sinica,
2005, 54(9): 4019-4025.
doi: 10.7498/aps.54.4019
|
[18] |
Ye Mei-Ying, Wang Xiao-Dong, Zhang Hao-Ran. Chaotic time series forecasting using online least squares support vector machine regression. Acta Physica Sinica,
2005, 54(6): 2568-2573.
doi: 10.7498/aps.54.2568
|
[19] |
Cui Wan-Zhao, Zhu Chang-Chun, Bao Wen-Xing, Liu Jun-Hua. Prediction of the chaotic time series using support vector machines for fuzzy rule-based modeling. Acta Physica Sinica,
2005, 54(7): 3009-3018.
doi: 10.7498/aps.54.3009
|
[20] |
Cui Wan-Zhao, Zhu Chang-Chun, Bao Wen-Xing, Liu Jun-Hua. Prediction of the chaotic time series using support vector machines. Acta Physica Sinica,
2004, 53(10): 3303-3310.
doi: 10.7498/aps.53.3303
|