Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Construction of metallic nanocrystalline samples by molecular dynamics simulation

Ma Wen Zhu Wen-Jun Zhang Ya-Lin Chen Kai-Guo Deng Xiao-Liang Jing Fu-Qian

Citation:

Construction of metallic nanocrystalline samples by molecular dynamics simulation

Ma Wen, Zhu Wen-Jun, Zhang Ya-Lin, Chen Kai-Guo, Deng Xiao-Liang, Jing Fu-Qian
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The construction of metallic nanocrystalline (NC) samples by molecular dynamics simulation is investigated. Firstly, the initial NC aluminum and copper samples are assembled by Voronoi geometrical construction method, then the local minimized energy states of the samples are obtained by quenching (or conjugate gradient method). Finally, the simulated annealing method in normal pressure and temperature condition ensembles at zero pressure is used to approximate the global minimized energy states of the samples. The residual internal stress is employed to signify the difference between the simulated and the experimentally synthesized samples for the first time. The structure of grain boundaries, the descending process and the local distribution of the average internal stress and the energy of the samples, as well as the elastic constants of the final samples are observed during these two relaxation procedures. It is found that the energy and the residual internal stress of the samples are close to the experimental data after relaxation. It is enough to obtain the global minimum energy states through Voronoi geometrical construction to investigate the static and dynamic mechanical properties of NC metals with a 5—10 ps local energy minimization and a 40—100 ps of simulated annealing with annealing temperature between the room temperature and 65% of melting point. The annealing time and temperature are of little importantce to the mechanical properties within the parameter windows properly selected.
    [1]

    Weertman J R 2002 Nanostructured Materials: Processing, Properties, and Potential Applications (New York: William Andrew Publishing) p397

    [2]

    Wang H T, Yang W 2004 Adv. Mech. 34 13(in Chinese) [王宏涛、杨 卫 2004 力学进展 34 13]

    [3]

    Jiang B, Weng G J 2004 J. Mech. Phys. Solids 52 1125

    [4]

    Zhang L, Wang S Q, Ye H Q 2004 Acta Phys. Sin. 53 2497(in Chinese) [张 林、 王绍青、 叶恒强 2004 物理学报 53 2497]

    [5]

    van Swygenhoven H, Derlet P M 2008 Dislocations in Solids (Amsterdam: Elsevier) p1

    [6]

    Meyers M A, Mishra A, Benson D J 2006 Prog. Mater. Sci. 51 427

    [7]

    Kadau K, Germann T C, Lomdahl P S, Holian B L, Kadau D, Entel P, Kreth M, Westerhoff F, Wolf D E 2004 Metall. Mater. Trans. A 35 2719

    [8]

    Keblinski P, Wolf D, Phillpot S R, Gleiter H 1999 Scripta Mater. 41 631

    [9]

    Chen D 1995 Comput. Mater. Sci. 3 327

    [10]

    van Swygenhoven H, Caro A 1997 Nanostruct. Mater. 9 669

    [11]

    Schitz J, Vegge T, di Tolla F D, Jacobsen K W 1999 Phys. Rev. B 60 11971

    [12]

    Dalla Torre F, van Swygenhoven H, Victoria M 2002 Acta Mater. 50 3957

    [13]

    Frseth A G, Derlet P M, van Swygenhoven H 2006 Scripta Mater. 54 477

    [14]

    van Swygenhoven H, Derlet P M 2001 Phys. Rev. B 64 224105

    [15]

    Yamakov V, Wolf D, Phillpot S R, Gleiter H 2002 Acta Mater. 50 5005

    [16]

    Bringa E M, Caro A, Wang Y M, Victoria M, McNaney J M, Remington B A, Smith R F, Torralva B R, van Swygenhoven H 2005 Science 309 1838

    [17]

    Xu Z, Wang X X, Liang H Y, Wu H A 2004 Acta Phys. Sin. 53 3637(in Chinese) [徐 洲、王秀喜、 梁海弋、 吴恒安 2004 物理学报 53 3637]

    [18]

    Plimpton S J 1995 J. Comput. Phys. 117 1

    [19]

    Cui X L, Zhu W J, Deng X L, Li Y J, He H L 2006 Acta Phys. Sin. 55 5545(in Chinese) [崔新林、 祝文军、 邓小良、 李英骏、 贺红亮 2006 物理学报 55 5545]

    [20]

    Deng X L, Zhu W J, He H L, Wu D X, Jing F Q 2006 Acta Phys. Sin. 55 4767(in Chinese) [邓小良、 祝文军、 贺红亮、 伍登学、 经福谦 2006 物理学报 55 4767]

    [21]

    Parrinello M, Rahman A 1980 J. Appl. Phys. 52 7182

    [22]

    Hoover W G 1989 Phys. Rev. A 40 2814

    [23]

    Nose S, Yonezawa F 1986 J. Chem. Phys. 84 1803

    [24]

    Mishin Y, Mehl M J, Papaconstantopoulos D A, Voter A F, Kress J D 2001 Phys. Rev. B 63 224106

    [25]

    Mishin Y, Parkas D, Mehl M J, Papaconstantopoulos D 1999 Mater. Res. Soc. Symp. Proc. 538 535

    [26]

    Zhu W J, Song Z F, Deng X L, He H L, Cheng X Y 2007 Phys. Rev. B 75 024104

    [27]

    Wang H Y, Zhu W J, Song Z F, Liu S J, Chen X R, He H L 2008 Acta Phys. Sin. 57 3703(in Chinese) [王海燕、 祝文军、 宋振飞、 刘绍军、 陈向荣、 贺红亮 2008 物理学报 57 3703]

    [28]

    Honeycutt J D, Andersen H C 1987 J. Phys. Chem. 91 4950

    [29]

    Cormier J, Rickman J M, Delph T J 2001 J. Appl. Phys. 89 99

    [30]

    Bulatov V V, Cai W 2006 Computer Simulations of Dislocations (Oxford: Oxford University Press) p42

    [31]

    Wu X L, Zhu Y T, Ma E 2006 Appl. Phys. Lett. 88 121905

    [32]

    Liu X M 2003 Micro- and Meso-Scale Structure and Mechanical Properties of Engineering Materials (Hefei: University of Science and Technology of China Press) p112 (in Chinese) [刘孝敏 2003工程材料的微细观结构和力学性能 (合肥: 中国科学技术大学出版社) 第112页]

  • [1]

    Weertman J R 2002 Nanostructured Materials: Processing, Properties, and Potential Applications (New York: William Andrew Publishing) p397

    [2]

    Wang H T, Yang W 2004 Adv. Mech. 34 13(in Chinese) [王宏涛、杨 卫 2004 力学进展 34 13]

    [3]

    Jiang B, Weng G J 2004 J. Mech. Phys. Solids 52 1125

    [4]

    Zhang L, Wang S Q, Ye H Q 2004 Acta Phys. Sin. 53 2497(in Chinese) [张 林、 王绍青、 叶恒强 2004 物理学报 53 2497]

    [5]

    van Swygenhoven H, Derlet P M 2008 Dislocations in Solids (Amsterdam: Elsevier) p1

    [6]

    Meyers M A, Mishra A, Benson D J 2006 Prog. Mater. Sci. 51 427

    [7]

    Kadau K, Germann T C, Lomdahl P S, Holian B L, Kadau D, Entel P, Kreth M, Westerhoff F, Wolf D E 2004 Metall. Mater. Trans. A 35 2719

    [8]

    Keblinski P, Wolf D, Phillpot S R, Gleiter H 1999 Scripta Mater. 41 631

    [9]

    Chen D 1995 Comput. Mater. Sci. 3 327

    [10]

    van Swygenhoven H, Caro A 1997 Nanostruct. Mater. 9 669

    [11]

    Schitz J, Vegge T, di Tolla F D, Jacobsen K W 1999 Phys. Rev. B 60 11971

    [12]

    Dalla Torre F, van Swygenhoven H, Victoria M 2002 Acta Mater. 50 3957

    [13]

    Frseth A G, Derlet P M, van Swygenhoven H 2006 Scripta Mater. 54 477

    [14]

    van Swygenhoven H, Derlet P M 2001 Phys. Rev. B 64 224105

    [15]

    Yamakov V, Wolf D, Phillpot S R, Gleiter H 2002 Acta Mater. 50 5005

    [16]

    Bringa E M, Caro A, Wang Y M, Victoria M, McNaney J M, Remington B A, Smith R F, Torralva B R, van Swygenhoven H 2005 Science 309 1838

    [17]

    Xu Z, Wang X X, Liang H Y, Wu H A 2004 Acta Phys. Sin. 53 3637(in Chinese) [徐 洲、王秀喜、 梁海弋、 吴恒安 2004 物理学报 53 3637]

    [18]

    Plimpton S J 1995 J. Comput. Phys. 117 1

    [19]

    Cui X L, Zhu W J, Deng X L, Li Y J, He H L 2006 Acta Phys. Sin. 55 5545(in Chinese) [崔新林、 祝文军、 邓小良、 李英骏、 贺红亮 2006 物理学报 55 5545]

    [20]

    Deng X L, Zhu W J, He H L, Wu D X, Jing F Q 2006 Acta Phys. Sin. 55 4767(in Chinese) [邓小良、 祝文军、 贺红亮、 伍登学、 经福谦 2006 物理学报 55 4767]

    [21]

    Parrinello M, Rahman A 1980 J. Appl. Phys. 52 7182

    [22]

    Hoover W G 1989 Phys. Rev. A 40 2814

    [23]

    Nose S, Yonezawa F 1986 J. Chem. Phys. 84 1803

    [24]

    Mishin Y, Mehl M J, Papaconstantopoulos D A, Voter A F, Kress J D 2001 Phys. Rev. B 63 224106

    [25]

    Mishin Y, Parkas D, Mehl M J, Papaconstantopoulos D 1999 Mater. Res. Soc. Symp. Proc. 538 535

    [26]

    Zhu W J, Song Z F, Deng X L, He H L, Cheng X Y 2007 Phys. Rev. B 75 024104

    [27]

    Wang H Y, Zhu W J, Song Z F, Liu S J, Chen X R, He H L 2008 Acta Phys. Sin. 57 3703(in Chinese) [王海燕、 祝文军、 宋振飞、 刘绍军、 陈向荣、 贺红亮 2008 物理学报 57 3703]

    [28]

    Honeycutt J D, Andersen H C 1987 J. Phys. Chem. 91 4950

    [29]

    Cormier J, Rickman J M, Delph T J 2001 J. Appl. Phys. 89 99

    [30]

    Bulatov V V, Cai W 2006 Computer Simulations of Dislocations (Oxford: Oxford University Press) p42

    [31]

    Wu X L, Zhu Y T, Ma E 2006 Appl. Phys. Lett. 88 121905

    [32]

    Liu X M 2003 Micro- and Meso-Scale Structure and Mechanical Properties of Engineering Materials (Hefei: University of Science and Technology of China Press) p112 (in Chinese) [刘孝敏 2003工程材料的微细观结构和力学性能 (合肥: 中国科学技术大学出版社) 第112页]

  • [1] Chen Xian, Zhang Jing, Tang Zhao-Huan. Molecular dynamics study of release mechanism of stress at Si/Ge interface on a nanoscale. Acta Physica Sinica, 2019, 68(2): 026801. doi: 10.7498/aps.68.20181530
    [2] Li Jie-Jie, Lu Bin-Bin, Xian Yue-Hui, Hu Guo-Ming, Xia Re. Characterization of nanoporous silver mechanical properties by molecular dynamics simulation. Acta Physica Sinica, 2018, 67(5): 056101. doi: 10.7498/aps.67.20172193
    [3] Wen Peng, Tao Gang, Ren Bao-Xiang, Pei Zheng. Superplastic deformation mechanism of nanocrystalline copper: a molecular dynamics study. Acta Physica Sinica, 2015, 64(12): 126201. doi: 10.7498/aps.64.126201
    [4] Yuan Lin, Jing Peng, Liu Yan-Hua, Xu Zhen-Hai, Shan De-Bin, Guo Bin. Molecular dynamics simulation of polycrystal silver nanowires under tensile deformation. Acta Physica Sinica, 2014, 63(1): 016201. doi: 10.7498/aps.63.016201
    [5] Liu Hai, Li Qi-Kai, He Yuan-Hang. Pyrolysis of CL20-TNT cocrystal from ReaxFF/lg reactive molecular dynamics simulations. Acta Physica Sinica, 2013, 62(20): 208202. doi: 10.7498/aps.62.208202
    [6] Ma Wen, Lu Yan-Wen. Molecular dynamics investigation of shock front in nanocrystalline copper. Acta Physica Sinica, 2013, 62(3): 036201. doi: 10.7498/aps.62.036201
    [7] Chen Min. Molecular dynamics study of small helium cluster diffusion in titanium. Acta Physica Sinica, 2011, 60(12): 126602. doi: 10.7498/aps.60.126602
    [8] Ma Wen, Zhu Wen-Jun, Chen Kai-Guo, Jing Fu-Qian. Molecular dynamics investigation of shock front in nanocrystalline aluminum: grain boundary effects. Acta Physica Sinica, 2011, 60(1): 016107. doi: 10.7498/aps.60.016107
    [9] Zhao Cheng-Li, Lü Xiao-Dan, Ning Jian-Ping, Qing You-Min, He Ping-Ni, Gou Fu-Jun. Molecular dynamics simulations of energy effectson atorn F interaction with SiC(100). Acta Physica Sinica, 2011, 60(9): 095203. doi: 10.7498/aps.60.095203
    [10] Chen Kai-Guo, Zhu Wen-Jun, Ma Wen, Deng Xiao-Liang, He Hong-Liang, Jing Fu-Qian. Propagation of shockwave in nanocrystalline copper: Molecular dynamics simulation. Acta Physica Sinica, 2010, 59(2): 1225-1232. doi: 10.7498/aps.59.1225
    [11] Yan An-Ying, Jiang Ming, Zhang Chuan-Wu, Miao Feng, Gou Fu-Jun. Energy and spectrum of BeO molecule under the electric field from different directions. Acta Physica Sinica, 2010, 59(11): 7743-7748. doi: 10.7498/aps.59.7743
    [12] Zhou Zong-Rong, Wang Yu, Xia Yuan-Ming. Molecular dynamics study of deformation mechanism of γ-TiAl intermetallics. Acta Physica Sinica, 2007, 56(3): 1526-1531. doi: 10.7498/aps.56.1526
    [13] Zhou Guo-Rong, Gao Qiu-Ming. Freezing of Ni nanowires investigated by molecular dynamics simulation. Acta Physica Sinica, 2007, 56(3): 1499-1505. doi: 10.7498/aps.56.1499
    [14] Yang Quan-Wen, Zhu Ru-Zeng. Freezing of Cu nanoclusters studied by molecular dynamics simulation. Acta Physica Sinica, 2005, 54(9): 4245-4250. doi: 10.7498/aps.54.4245
    [15] Wang Hai-Long, Wang Xiu-Xi, Liang Hai-Yi. Molecular dynamics simulation of strain effects on surface melting for metal Cu. Acta Physica Sinica, 2005, 54(10): 4836-4841. doi: 10.7498/aps.54.4836
    [16] Tao Yong-Mei, Jiang Qing, Cao Hai-Xia. Impact of stress on the thermodynamic properties of ferroelectric films within the transverse Ising model. Acta Physica Sinica, 2005, 54(1): 274-279. doi: 10.7498/aps.54.274
    [17] Yang Quan-Wen, Zhu Ru-Zeng, Wen Yu-Hua. Molecular dynamics study on the energy characteristic of copper nanoclusters at room temperature and during heating. Acta Physica Sinica, 2005, 54(1): 89-95. doi: 10.7498/aps.54.89
    [18] Chen Jun, Jing Fu-Qian, Zhang Jing-Lin, Chen Dong-Quan. . Acta Physica Sinica, 2002, 51(10): 2386-2392. doi: 10.7498/aps.51.2386
    [19] Wu Heng-An, Ni Xiang-Gui, Wang Yu, Wang Xiu-Xi. . Acta Physica Sinica, 2002, 51(7): 1412-1415. doi: 10.7498/aps.51.1412
    [20] Liang Hai-Ge, Wang Xiu-Xi, Wu Heng-An, Wang Yu and. . Acta Physica Sinica, 2002, 51(10): 2308-2314. doi: 10.7498/aps.51.2308
Metrics
  • Abstract views:  9258
  • PDF Downloads:  2727
  • Cited By: 0
Publishing process
  • Received Date:  20 August 2009
  • Accepted Date:  11 November 2009
  • Published Online:  15 July 2010

/

返回文章
返回