-
This paper focuses on a new type of dislocated projective synchronization, in which, the state variables of drive system and resporse system, at least one pair is required not to synchronize in proportion to the original corresponding state variable, but to realige the projective synchronization in proportion to dislocation relation of vectors. Here a new Qi hyper-chaotic system is taken for example, which has 23 synchronized schemes. Using the Lyapunov stability theory, a nonlinear controller is presented and a kind of disorder projective synchronization for Qi system is successfully completed. Then this method is applied to secure communication through improved chaotic masking. The information signal is mixed with the chaotic signal before being transmitted, and is recovered without distortion through the synchronized receiver. Simulation results show that the scheme has a good performance.
-
Keywords:
- hyper-chaotic system /
- Qi system /
- dislocated projective synchronization /
- secure communication
[1] Luo A C J 2009 Commun Nonlinear Sci Numer Simulat 14 1901
[2] Qi W,Wang Y H 2009 Chin. Phys. B 18 1404
[3] Electronics 29 1346 (in Chinese) [陶朝海、 陆君安、 陈士华 2004 系统工程与电子技术 26 81]
[4] Taherion S, Lai Y 2000 Int. J. Bifurc. Chaos. 10 2587
[5] Rosenblum M, Pikovsky A, Kurth J 1996. Phys. Rev. Lett. 76 1804
[6] Guo LX,Hu MF,Xu ZY 2010 Chin. Phys. B 19 020512
[7] Min F H,Wang Z Q 2008 Acta Phys. Sin. 57 31 (in Chinese) [闵富红、 王执铨 2008 物理学报 57 31]
[8] Meng J, Wang X Y 2009 Acta Phys. Sin. 58 819 (in Chinese) [孟 娟、 王兴元 2009 物理学报 58 819]
[9] Tao C H, Lu J A, Chen S H 2004 Systems Engineering and
[10] Hu M F, Xu Z Y 2007 Systems Engineering and Electronics 29 1346 (in Chinese) [胡满峰、 徐振源 2007 系统与工程电子技术 29 1346]
[11] Qi G Y, Michae · · l A, Barend J, Chen GR 2009 Chaos. Solitons Fract. 40 2544
[12] Li K Z, Zhao M C, Fu X C 2009 IEEE Trans. On Circuits and systems Ⅰ 56 2280
[13] Milanovic V, Zaghloul M E 1996 Electronic letters. 32 11
-
[1] Luo A C J 2009 Commun Nonlinear Sci Numer Simulat 14 1901
[2] Qi W,Wang Y H 2009 Chin. Phys. B 18 1404
[3] Electronics 29 1346 (in Chinese) [陶朝海、 陆君安、 陈士华 2004 系统工程与电子技术 26 81]
[4] Taherion S, Lai Y 2000 Int. J. Bifurc. Chaos. 10 2587
[5] Rosenblum M, Pikovsky A, Kurth J 1996. Phys. Rev. Lett. 76 1804
[6] Guo LX,Hu MF,Xu ZY 2010 Chin. Phys. B 19 020512
[7] Min F H,Wang Z Q 2008 Acta Phys. Sin. 57 31 (in Chinese) [闵富红、 王执铨 2008 物理学报 57 31]
[8] Meng J, Wang X Y 2009 Acta Phys. Sin. 58 819 (in Chinese) [孟 娟、 王兴元 2009 物理学报 58 819]
[9] Tao C H, Lu J A, Chen S H 2004 Systems Engineering and
[10] Hu M F, Xu Z Y 2007 Systems Engineering and Electronics 29 1346 (in Chinese) [胡满峰、 徐振源 2007 系统与工程电子技术 29 1346]
[11] Qi G Y, Michae · · l A, Barend J, Chen GR 2009 Chaos. Solitons Fract. 40 2544
[12] Li K Z, Zhao M C, Fu X C 2009 IEEE Trans. On Circuits and systems Ⅰ 56 2280
[13] Milanovic V, Zaghloul M E 1996 Electronic letters. 32 11
Catalog
Metrics
- Abstract views: 8476
- PDF Downloads: 1051
- Cited By: 0