-
In this paper, from the stability theory of fractional-order chaotic system, a kind of dislocated projective synchronization for fractional-order Chua's system is successfully completed through a nonlinear controller. Meanwhile, the fractional-order unit circuit is designed, according to the series-parallel structure of resistor-capacitor and the approximate linear transfer function expression for the complex frequency domain. Thus, non-inductive modular circuit of dislocated projective synchronization of fractional-order Chua's system is realized. The circuit simulation results prove the feasibility of the scheme. Furthermore, the method can be applied in secure communication through the improved chaotic masking. The information signal can be concealed and recovered. Numerical simulation results show the effectiveness of the proposed method.
-
Keywords:
- fractional-order Chua's system /
- dislocated synchronization /
- non-inductive modular circuit /
- secure communication
[1] Podlubny I 1999 Fractional Differential Align (New York: Academic)
[2] Ivo P 2011 Fractional-order Nonlinear System: Modeling, Analysis and Simulation (Beijing: Higher Education Press)
[3] Li C G, Chen G R 2004 Physica A 341 55
[4] Lu J G 2006 Physica A 359 107
[5] Lu J G 2006 Phys. Lett. A 354 305
[6] Yu Y G, Li H X, Wang S 2009 Chaos Soliton. Fract. 42 1181
[7] Min F H, Yu Y, Ge C J 2009 Acta Phys. Sin. 58 1456 (in Chinese) [闵富红, 余杨, 葛曹君 2009 物理学报 58 1456]
[8] Zhou P, Kuang F 2010 Acta Phys. Sin. 59 6851 (in Chinese) [周平, 邝菲 2010 物理学报 59 6851]
[9] Huang L L, Ma N 2012 Acta Phys. Sin. 61 160510 (in Chinese) [黄丽莲, 马楠 2012 物理学报 61 160510]
[10] Ma T D, Jiang W B, Fu J, Chai Y, Chen L P, Xue F Z 2012 Acta Phys. Sin. 61 160506 (in Chinese) [马铁东, 江伟波, 浮洁, 柴毅, 陈立平, 薛方正 2012 物理学报 61 160506]
[11] Min F H, Wang E R 2010 Acta Phys. Sin. 59 7657 (in Chinese) [闵富红, 王恩荣 2010 物理学报 59 7657]
[12] Wang Z, Huang X, Li N, Song X N 2012 Chin. Phys. B 21 050506
[13] Chua L O, Komuro M, Matsumoto T 1986 IEEE Trans. Circuits Systems 33 1072
[14] Li J F, Li N, Cai L, Zhang B 2008 Acta Phys. Sin. 57 7500 (in Chinese) [李建芬, 李农, 蔡理, 张斌 2008 物理学报 57 7500]
[15] Ji Y, Bi Q S 2010 Chin. Phys. B 19 080510
[16] Hartley T T, Lorenzo C F, Qammer H K 1995 IEEE Trans. Circuits Systems 42 485
[17] Charef A, Sun HH, Tsao YY, Onaral B 1992 IEEE Trans. Aut. Contr 37 1465
[18] Wang F Q, Liu C X 2006 Acta Phys. Sin. 55 5055 (in Chinese) [王发强, 刘崇新 2006 物理学报 55 5055]
[19] Milanovic V, Zaghloul M E 1996 Electronic Letters 32 11
-
[1] Podlubny I 1999 Fractional Differential Align (New York: Academic)
[2] Ivo P 2011 Fractional-order Nonlinear System: Modeling, Analysis and Simulation (Beijing: Higher Education Press)
[3] Li C G, Chen G R 2004 Physica A 341 55
[4] Lu J G 2006 Physica A 359 107
[5] Lu J G 2006 Phys. Lett. A 354 305
[6] Yu Y G, Li H X, Wang S 2009 Chaos Soliton. Fract. 42 1181
[7] Min F H, Yu Y, Ge C J 2009 Acta Phys. Sin. 58 1456 (in Chinese) [闵富红, 余杨, 葛曹君 2009 物理学报 58 1456]
[8] Zhou P, Kuang F 2010 Acta Phys. Sin. 59 6851 (in Chinese) [周平, 邝菲 2010 物理学报 59 6851]
[9] Huang L L, Ma N 2012 Acta Phys. Sin. 61 160510 (in Chinese) [黄丽莲, 马楠 2012 物理学报 61 160510]
[10] Ma T D, Jiang W B, Fu J, Chai Y, Chen L P, Xue F Z 2012 Acta Phys. Sin. 61 160506 (in Chinese) [马铁东, 江伟波, 浮洁, 柴毅, 陈立平, 薛方正 2012 物理学报 61 160506]
[11] Min F H, Wang E R 2010 Acta Phys. Sin. 59 7657 (in Chinese) [闵富红, 王恩荣 2010 物理学报 59 7657]
[12] Wang Z, Huang X, Li N, Song X N 2012 Chin. Phys. B 21 050506
[13] Chua L O, Komuro M, Matsumoto T 1986 IEEE Trans. Circuits Systems 33 1072
[14] Li J F, Li N, Cai L, Zhang B 2008 Acta Phys. Sin. 57 7500 (in Chinese) [李建芬, 李农, 蔡理, 张斌 2008 物理学报 57 7500]
[15] Ji Y, Bi Q S 2010 Chin. Phys. B 19 080510
[16] Hartley T T, Lorenzo C F, Qammer H K 1995 IEEE Trans. Circuits Systems 42 485
[17] Charef A, Sun HH, Tsao YY, Onaral B 1992 IEEE Trans. Aut. Contr 37 1465
[18] Wang F Q, Liu C X 2006 Acta Phys. Sin. 55 5055 (in Chinese) [王发强, 刘崇新 2006 物理学报 55 5055]
[19] Milanovic V, Zaghloul M E 1996 Electronic Letters 32 11
Catalog
Metrics
- Abstract views: 6614
- PDF Downloads: 647
- Cited By: 0