-
Influenza viruses are divided into three types: A, B and C. Among them, type A virus is the most virulent human pathogen and causes the most severe disease. In this paper, we propose a new time series model for influenza A virus DNA sequence, i.e.chaos game representation (CGR) radians series. The CGR coordinates are converted into a time series model, and a long-memory ARFIMA(p,d,q) model is introduced to simulate the time series model. We select randomly 10 H1N1 sequences and 10 H3N2 sequences in analysis. we find in these data a remarkably long-range correlation and fit the model reasonably by ARFIMA(p,d,q) model, and also find that we can use different ARFIMA models to identify the two kinds of sequences, i.e. ARFIMA(0,d,5) model and ARFIMA(1,d,1) model that can identify H1N1 and H3N2 respectively.
-
Keywords:
- influenza A virus /
- time series model /
- chaos game representation(CGR) /
- ARFIMA(p /
- d /
- q) model
[1] Morens D, Folkers G, Fauci A 2004 Nature 430 242
[2] Chen J M, Sun Y X, Liu S 2009 Chinese Science Bulletin 54 1657 (in Chinese)[陈继明、孙映雪、刘 朔 2009 科学通报 54 1657]
[3] Webster R G, Bean W J, Gorman O T 1992 Microbiol Rev. 56 152
[4] Shi X M, Shi L, Zhang J F 2010 Chin.Phys. B 19 038701
[5] Peng C K, Buldyrev S, Goldberg A L, Havlin S, Sciortino F, Simons M, Stanley H E 1992 Nature 356 168
[6] Voss R F 1992 Phys.Rev.Lett. 68 3805
[7] Buldyrev S V, Goldberger A L, Havlin S, Peng C K, Simon M, Stanley H E 1993 Phys.Rev.E 47 4514
[8] Buldyrev S V, Goldberger A L, Havlin S, Mantegna R N, Matsa ME, Peng C K, Simon M, Stanley H E 1995 Phys.Rev. E 51 5084
[9] Tai Y Y, Li P C, Tseng H C 2006 Physica A 369 688
[10] Luo L F, Lee W J, Jia L J, Ji F M, Tsai L 1998 Phys.Rev. E 58 861
[11] Yu Z G, Chen G Y 2000 Theor.Phys. 33 673
[12] Yu Z G, Anh V, Gong Z M, Long S C 2002 Chin.Phys. 11 1313
[13] Lopes S R C, Nunes M A 2006 Physica A 361 569
[14] Gao J, Xu Z Y 2009 Chin.Phys. B 18 370
[15] Jeffrey H J 1990 Nucleic Acid Res 18 2163
[16] Almeida Jonas, carrico Joao A, Maretzek António 2001 Bioinformatics 17 429
[17] Beran J 1994 Statistics for long-memory Processes(New Work: Chapman Hall)
[18] Hosking J R M 1984 Water Resour.Res. 20 1898
[19] Crato N, Ray B K 1996 Journal of Forcasting 15 107
[20] Ljung G M, Box G E P 1978 Biometrika 65 297
[21] Li W K, Mcleod A I 1986 Biometrika 73 217
-
[1] Morens D, Folkers G, Fauci A 2004 Nature 430 242
[2] Chen J M, Sun Y X, Liu S 2009 Chinese Science Bulletin 54 1657 (in Chinese)[陈继明、孙映雪、刘 朔 2009 科学通报 54 1657]
[3] Webster R G, Bean W J, Gorman O T 1992 Microbiol Rev. 56 152
[4] Shi X M, Shi L, Zhang J F 2010 Chin.Phys. B 19 038701
[5] Peng C K, Buldyrev S, Goldberg A L, Havlin S, Sciortino F, Simons M, Stanley H E 1992 Nature 356 168
[6] Voss R F 1992 Phys.Rev.Lett. 68 3805
[7] Buldyrev S V, Goldberger A L, Havlin S, Peng C K, Simon M, Stanley H E 1993 Phys.Rev.E 47 4514
[8] Buldyrev S V, Goldberger A L, Havlin S, Mantegna R N, Matsa ME, Peng C K, Simon M, Stanley H E 1995 Phys.Rev. E 51 5084
[9] Tai Y Y, Li P C, Tseng H C 2006 Physica A 369 688
[10] Luo L F, Lee W J, Jia L J, Ji F M, Tsai L 1998 Phys.Rev. E 58 861
[11] Yu Z G, Chen G Y 2000 Theor.Phys. 33 673
[12] Yu Z G, Anh V, Gong Z M, Long S C 2002 Chin.Phys. 11 1313
[13] Lopes S R C, Nunes M A 2006 Physica A 361 569
[14] Gao J, Xu Z Y 2009 Chin.Phys. B 18 370
[15] Jeffrey H J 1990 Nucleic Acid Res 18 2163
[16] Almeida Jonas, carrico Joao A, Maretzek António 2001 Bioinformatics 17 429
[17] Beran J 1994 Statistics for long-memory Processes(New Work: Chapman Hall)
[18] Hosking J R M 1984 Water Resour.Res. 20 1898
[19] Crato N, Ray B K 1996 Journal of Forcasting 15 107
[20] Ljung G M, Box G E P 1978 Biometrika 65 297
[21] Li W K, Mcleod A I 1986 Biometrika 73 217
Catalog
Metrics
- Abstract views: 8795
- PDF Downloads: 643
- Cited By: 0