-
A general method of modifying function projective synchronization of a class of chaotic systems is proposed in this paper by designing a suitable response system. The two schemes of obtaining the response system from chaotic system are established based on unidirectional coupled synchronization. Since chaos synchronization can be achieved by transmitting only a single variable from driving system to response system, this method is more practical. The stability analysis in the paper is proved using Lyapunov stability theory. Numerical simulations of a hyperchaotic system verify the effectiveness of the proposed method.
[1] Pecora L M, Carroll T L 1990 Phys. Rev. Lett. 64 821
[2] [3] Rosenblum M G, Pikovsky A S, Kurths J 1996 Phys. Rev. Lett. 76 1804
[4] Taherion1 S, Lai Y C 1999 Phys. Rev. E 59 6247
[5] [6] [7] Kocarev L, Parlitz U 1996 Phys. Rev. Lett. 76 1816
[8] [9] Yang S S, Duan K 1998 Chaos Solitons Fract. 10 1703
[10] Li G H 2004 Acta Phys. Sin. 53 999 (in Chinese)[李国辉 2004 物理学报 53 999]
[11] [12] [13] Zhang W P, Tang G N, Luo X S 2005 Acta Phys. Sin. 54 3497 (in Chinese)[张伟平、 唐国宁、 罗晓曙 2005 物理学报 54 3497]
[14] [15] Wang X Y, Meng J 2008 Acta Phys. Sin. 57 726 (in Chinese)[王兴元、 孟 娟 2008 物理学报 57 726]
[16] Liu J, Chen S H, Lu J A 2003 Acta Phys. Sin. 52 1595 (in Chinese)[刘 杰、 陈士华、 陆君安 2003 物理学报 52 1595]
[17] [18] [19] Wang X Y, Wang Y 2007 Acta Phys. Sin. 56 2498 (in Chinese) [王兴元、 王 勇 2007 物理学报 56 2498]
[20] Li G H 2007 Chaos Solitons Fract. 32 1454
[21] [22] [23] Li G H 2007 Chaos Solitons Fract. 32 1786
[24] [25] Du H, Zeng Q, Wong C 2008 Phys. Lett. A 372 5402
[26] Sudheer K S, Sabir M 2009 Phys. Lett. A 373 1847
[27] [28] Du H, Zeng Q, Wong C 2009 Chaos Solitons Fract. 42 2399
[29] [30] [31] Sudheer K S, Sabir M 2009 Phys. Lett. A 373 3743
[32] [33] Wang J A, Liu H P 2010 Acta Phys. Sin. 59 2264 (in Chinese) [王健安、 刘贺平 2010 物理学报 59 2264]
[34] [35] Chen Z, Yang Y, Qi Q, Yuan Z 2007 Phys. Lett. A 360 696
[36] Lu J, Han F L,Yu X H, Chen G R 2004 Automatica 40 1677
[37] [38] [39] L J H, Chen G R 2006 Int. J. Bifur. Chaos 16 775
-
[1] Pecora L M, Carroll T L 1990 Phys. Rev. Lett. 64 821
[2] [3] Rosenblum M G, Pikovsky A S, Kurths J 1996 Phys. Rev. Lett. 76 1804
[4] Taherion1 S, Lai Y C 1999 Phys. Rev. E 59 6247
[5] [6] [7] Kocarev L, Parlitz U 1996 Phys. Rev. Lett. 76 1816
[8] [9] Yang S S, Duan K 1998 Chaos Solitons Fract. 10 1703
[10] Li G H 2004 Acta Phys. Sin. 53 999 (in Chinese)[李国辉 2004 物理学报 53 999]
[11] [12] [13] Zhang W P, Tang G N, Luo X S 2005 Acta Phys. Sin. 54 3497 (in Chinese)[张伟平、 唐国宁、 罗晓曙 2005 物理学报 54 3497]
[14] [15] Wang X Y, Meng J 2008 Acta Phys. Sin. 57 726 (in Chinese)[王兴元、 孟 娟 2008 物理学报 57 726]
[16] Liu J, Chen S H, Lu J A 2003 Acta Phys. Sin. 52 1595 (in Chinese)[刘 杰、 陈士华、 陆君安 2003 物理学报 52 1595]
[17] [18] [19] Wang X Y, Wang Y 2007 Acta Phys. Sin. 56 2498 (in Chinese) [王兴元、 王 勇 2007 物理学报 56 2498]
[20] Li G H 2007 Chaos Solitons Fract. 32 1454
[21] [22] [23] Li G H 2007 Chaos Solitons Fract. 32 1786
[24] [25] Du H, Zeng Q, Wong C 2008 Phys. Lett. A 372 5402
[26] Sudheer K S, Sabir M 2009 Phys. Lett. A 373 1847
[27] [28] Du H, Zeng Q, Wong C 2009 Chaos Solitons Fract. 42 2399
[29] [30] [31] Sudheer K S, Sabir M 2009 Phys. Lett. A 373 3743
[32] [33] Wang J A, Liu H P 2010 Acta Phys. Sin. 59 2264 (in Chinese) [王健安、 刘贺平 2010 物理学报 59 2264]
[34] [35] Chen Z, Yang Y, Qi Q, Yuan Z 2007 Phys. Lett. A 360 696
[36] Lu J, Han F L,Yu X H, Chen G R 2004 Automatica 40 1677
[37] [38] [39] L J H, Chen G R 2006 Int. J. Bifur. Chaos 16 775
Catalog
Metrics
- Abstract views: 6900
- PDF Downloads: 772
- Cited By: 0