-
Recently, a certain total energy constraint =cN was introduced into the Kleinberg's navigation model, where is the total length of the long-range connections, c is a positive constant and N is the network size. The simulation results obtained in the one and two-dimensional cases indicate that with total cost restricted the optimal power-law exponent for adding extra long-range links between any two nodes seems to be =d+1, where d is the dimension of the underlying lattice in this paper. Based on mean field theory, the navigation process on the 2-dimensional cost constrained navigation model can be described by dynamical equations. Based on our theoretical analysis and the numerical results of the dynamical equations, we prove that for large networks and comparatively small total energy, the optimal power-law exponent is =3 for the two-dimensional case. Our results can perfectly correspond to simulations reported previously.
-
Keywords:
- navigation /
- cost restriction /
- complex networks /
- spatial networks
[1] Li S B, Wu J J, Gao Z Y, Lin Y, Fu B B 2011 Acta Phys. Sin. 60 050701 (in Chinese) [李树彬, 吴建军, 高自友, 林勇, 傅白白 2011 物理学报 60 050701]
[2] Xu D, Li X, Wang X F 2007 Acta Phys. Sin. 56 1313 (in Chinese) [许丹, 李翔, 汪小帆 2007 物理学报 56 1313]
[3] Watts D J, Strogatz S H 1998 Nature 393 6684
[4] Barabasi A L, Albert R 1999 Science 286 509
[5] Girvan M, Newman M E J 2004 Proc. Natl. Acad. Sci. 99 7821
[6] Du H F, Li S Z, Marcus W F, Yue Z S, Yang X S, 2007 Acta Phys. Sin. 56 6886 (in Chinese) [杜海峰, 李树茁, Marcus W F, 悦中山, 杨绪松 2007 物理学报 56 6886]
[7] Milgram S 1967 Psycholgy Today 2 60
[8] Travers J, Milgram S 1969 Sociometry 32 425
[9] Dodds P S, Muhamad R, Watts D J 2003 Science 301 827
[10] Kleinberg J 2000 Nature 406 845
[11] Kleinberg J 2000 Proceedings of the thirty-second annual ACM symposium on Theory of computing 163-170
[12] Roberson M R, Ben-Avraham D 2006 Phys. Rev. E 74 17101
[13] Martel C, Nguyen V 2004 Proceedings of the Symposium on Principles of Distributed Computing, ed. Kutten, S. (ACM Press, New York) 179-188
[14] Carmi S, Carter S, Sun J, Ben-Avraham D 2009 Phys. Rev. Lett. 102 238702
[15] Caretta Cartozo C, De Los Rios P 2009 Phys. Rev. Lett. 102 238702
[16] Yang H, Nie Y C, Zeng A, Fan Y, Hu Y Q, Di Z R 2010 EPL 89 5800
[17] Li G, Reis S D S, Moreira A A, Havlin S, Stanley H E, Andrade Jr. J S 2010 Phys. Rev. Lett. 104 018701
[18] Bianconi G, Pin P, Marsilli M 2009 Proc. Natl. Acad. Sci. 106 11433
[19] Li Y, Zhou D, Hu Y Q, Zhang J, Di Z R 2010 EPL 92 58002
[20] Hu Y Q, Li Y, Di Z R, Fan Y 2010 arXiv: 1010.18
-
[1] Li S B, Wu J J, Gao Z Y, Lin Y, Fu B B 2011 Acta Phys. Sin. 60 050701 (in Chinese) [李树彬, 吴建军, 高自友, 林勇, 傅白白 2011 物理学报 60 050701]
[2] Xu D, Li X, Wang X F 2007 Acta Phys. Sin. 56 1313 (in Chinese) [许丹, 李翔, 汪小帆 2007 物理学报 56 1313]
[3] Watts D J, Strogatz S H 1998 Nature 393 6684
[4] Barabasi A L, Albert R 1999 Science 286 509
[5] Girvan M, Newman M E J 2004 Proc. Natl. Acad. Sci. 99 7821
[6] Du H F, Li S Z, Marcus W F, Yue Z S, Yang X S, 2007 Acta Phys. Sin. 56 6886 (in Chinese) [杜海峰, 李树茁, Marcus W F, 悦中山, 杨绪松 2007 物理学报 56 6886]
[7] Milgram S 1967 Psycholgy Today 2 60
[8] Travers J, Milgram S 1969 Sociometry 32 425
[9] Dodds P S, Muhamad R, Watts D J 2003 Science 301 827
[10] Kleinberg J 2000 Nature 406 845
[11] Kleinberg J 2000 Proceedings of the thirty-second annual ACM symposium on Theory of computing 163-170
[12] Roberson M R, Ben-Avraham D 2006 Phys. Rev. E 74 17101
[13] Martel C, Nguyen V 2004 Proceedings of the Symposium on Principles of Distributed Computing, ed. Kutten, S. (ACM Press, New York) 179-188
[14] Carmi S, Carter S, Sun J, Ben-Avraham D 2009 Phys. Rev. Lett. 102 238702
[15] Caretta Cartozo C, De Los Rios P 2009 Phys. Rev. Lett. 102 238702
[16] Yang H, Nie Y C, Zeng A, Fan Y, Hu Y Q, Di Z R 2010 EPL 89 5800
[17] Li G, Reis S D S, Moreira A A, Havlin S, Stanley H E, Andrade Jr. J S 2010 Phys. Rev. Lett. 104 018701
[18] Bianconi G, Pin P, Marsilli M 2009 Proc. Natl. Acad. Sci. 106 11433
[19] Li Y, Zhou D, Hu Y Q, Zhang J, Di Z R 2010 EPL 92 58002
[20] Hu Y Q, Li Y, Di Z R, Fan Y 2010 arXiv: 1010.18
Catalog
Metrics
- Abstract views: 8230
- PDF Downloads: 384
- Cited By: 0