-
In the laser indirect-driven inertial confinement fusion, laser light is converted into X-rays by laser-plasma interactions in the hohlraum, then at the surface of the capsule the re-emission of hohlraum inner wall would drive a symmetrical radiation source to motivate implosion. It is of great importance to improve the features of laser to X-ray conversion in the hohlraum. The influence of low density gold foam on conversion features was investigated numerically with the help of one-dimensional hydrodynamics code. The numerical simulation results show that conversion efficiency increases with the decrease in gold density under the given laser condition. In particular, it can indeed have more than 19% extra conversion efficiency relatively when solid gold is replaced by gold foam of 0.1 g/cm3 density. In addition, the percentage of M-band decreases. There is an appropriate density of gold foam, at which the movement of plasma are restrained. According to the simulation results of energy balance, we get a higher radiation energy proportion when low density gold foam is selected as the target, and this is due to the decrease of kinetic energy losses compared with solid gold. Anyway, it is an effective approach to optimize the hohlraum by using low density gold foam to improve the features of laser to X-ray conversion, and these simulations would provide a scientific basis for further attempting correlative experiments.
-
Keywords:
- gold foam /
- laser to X-ray conversion /
- radiation spectrum /
- plasma movement
[1] Lindl J D, Amendt P, Berger R L, Glendinning S G, Glenzer S H, Haan S W, Kauffman R L, Landen O L, Suter L J 2004 Phys. Plasmas 11 339
[2] Sigel R, Eidmann K, Lavarenne F, Schmalz R F 1990 Phys. Fluids B 2 199
[3] Eidmann K, Schmalz R F, Sigel R 1990 Phys. Fluids B 2 208
[4] Mead W C, Stover E K 1988 Phys. Rev. A 38 5275
[5] Gabl E F, Failor B H, Busch G E, Schroeder R J, Ress D, Suter J 1990 Phys. Fluids B 2 2437
[6] Dahmani F 1992 Phys. Fluids B 4 1943
[7] Zhang J 1990 High Power Lasers and Particle Beams 2 179 (in Chinese) [张钧 1990 强激光与粒子束 2 179]
[8] Li Y S, Huo W Y, Lan K 2011 Phys. Plasmas 18 022701
[9] Huser G, Courtois C, Monteil M C 2009 Phys. Plasmas 16 032703
[10] Yang J M, Meng G W, Zhu T, Zhang J Y, Li J H, He X A, Yi R Q, Xu Y, Hu Z M, Ding Y N, Liu S Y, Ding Y K 2010 Phys. Plasmas 17 062702
[11] Ze F, Kania D R, Langer S H, Kornblum H, Kauffman R, Kilkenny J, Campbell E M, Tietbohl G 1989 J. Appl. Phys. 66 1935
[12] Nishimura H, Endo T, Shiraga H, Kato Y, Nakai S 1992 Appl. Phys. Lett. 62 1344
[13] Rosen M D, Hammer J H 2005 Phys. Rev. E 72 056403
[14] Young P E, Rosen M D, Hammer J H, Hsing W S, Glendinning S G, Turner R E, Kirkwood R, Schein J, Sorce C, Satcher J H, Hamza A, Reibold R A, Hibbard R, Landen O, Reighard A 2008 Phys. Rev. Lett. 101 035001
[15] Zhang L, Ding Y K, Yang J M, Wu S C, Jiang S E 2011 Phys. Plasmas 18 033301
[16] Jones O S, Schein J, Rosen M D, Suter L J, Wallace R J, Dewald E L, Glenzer S H, Campbell K M, Gunther J, Hammel B A, Landen O L, Sorce C M, Olson R E, Rochau G A, Wilkens H L, Kaae J L, Kilkenny J D, Nikroo A, Regan S P 2007 Phys. Plasmas 14 056311
[17] Ramis R, Schmalz R, Meyer-ter-vehn J 1988 Comput. Phys. Commun. 49 475
[18] Atzeni S, Merer-ter-vehn J 2004 The Physics of Inertial Fusion (1st Ed.) (New York: Oxford University Press) p195
[19] Dewald E L, Rosen M D, Glenzer S H, Suter L J, Girard F, Jadaud J P, Schein J, Constantin C, Wagon C, Huser G, Neumayer P, Landen O L 2008 Phys. Plasmas 15 072706
[20] Zhang J, Chang T Q 2004 Fundaments of the Target Physics for Laser Fusion (Beijing: National Defense Industry Press) p164 (in Chinese) [张钧, 常铁强 2004 激光核聚变靶物理基础 (北京: 国防工业出版社) 第164页]
-
[1] Lindl J D, Amendt P, Berger R L, Glendinning S G, Glenzer S H, Haan S W, Kauffman R L, Landen O L, Suter L J 2004 Phys. Plasmas 11 339
[2] Sigel R, Eidmann K, Lavarenne F, Schmalz R F 1990 Phys. Fluids B 2 199
[3] Eidmann K, Schmalz R F, Sigel R 1990 Phys. Fluids B 2 208
[4] Mead W C, Stover E K 1988 Phys. Rev. A 38 5275
[5] Gabl E F, Failor B H, Busch G E, Schroeder R J, Ress D, Suter J 1990 Phys. Fluids B 2 2437
[6] Dahmani F 1992 Phys. Fluids B 4 1943
[7] Zhang J 1990 High Power Lasers and Particle Beams 2 179 (in Chinese) [张钧 1990 强激光与粒子束 2 179]
[8] Li Y S, Huo W Y, Lan K 2011 Phys. Plasmas 18 022701
[9] Huser G, Courtois C, Monteil M C 2009 Phys. Plasmas 16 032703
[10] Yang J M, Meng G W, Zhu T, Zhang J Y, Li J H, He X A, Yi R Q, Xu Y, Hu Z M, Ding Y N, Liu S Y, Ding Y K 2010 Phys. Plasmas 17 062702
[11] Ze F, Kania D R, Langer S H, Kornblum H, Kauffman R, Kilkenny J, Campbell E M, Tietbohl G 1989 J. Appl. Phys. 66 1935
[12] Nishimura H, Endo T, Shiraga H, Kato Y, Nakai S 1992 Appl. Phys. Lett. 62 1344
[13] Rosen M D, Hammer J H 2005 Phys. Rev. E 72 056403
[14] Young P E, Rosen M D, Hammer J H, Hsing W S, Glendinning S G, Turner R E, Kirkwood R, Schein J, Sorce C, Satcher J H, Hamza A, Reibold R A, Hibbard R, Landen O, Reighard A 2008 Phys. Rev. Lett. 101 035001
[15] Zhang L, Ding Y K, Yang J M, Wu S C, Jiang S E 2011 Phys. Plasmas 18 033301
[16] Jones O S, Schein J, Rosen M D, Suter L J, Wallace R J, Dewald E L, Glenzer S H, Campbell K M, Gunther J, Hammel B A, Landen O L, Sorce C M, Olson R E, Rochau G A, Wilkens H L, Kaae J L, Kilkenny J D, Nikroo A, Regan S P 2007 Phys. Plasmas 14 056311
[17] Ramis R, Schmalz R, Meyer-ter-vehn J 1988 Comput. Phys. Commun. 49 475
[18] Atzeni S, Merer-ter-vehn J 2004 The Physics of Inertial Fusion (1st Ed.) (New York: Oxford University Press) p195
[19] Dewald E L, Rosen M D, Glenzer S H, Suter L J, Girard F, Jadaud J P, Schein J, Constantin C, Wagon C, Huser G, Neumayer P, Landen O L 2008 Phys. Plasmas 15 072706
[20] Zhang J, Chang T Q 2004 Fundaments of the Target Physics for Laser Fusion (Beijing: National Defense Industry Press) p164 (in Chinese) [张钧, 常铁强 2004 激光核聚变靶物理基础 (北京: 国防工业出版社) 第164页]
Catalog
Metrics
- Abstract views: 6297
- PDF Downloads: 583
- Cited By: 0