Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Algorithm for calculating the Lyapunov exponents of switching system and its application

Li Qing-Du Guo Jian-Li

Citation:

Algorithm for calculating the Lyapunov exponents of switching system and its application

Li Qing-Du, Guo Jian-Li
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Lyapunov characteristic exponent is significant for analyzing nonlinear dynamics. However, most algorithms are not applicable for the switching system. According to the traditional Jacobi method, in this paper we propose a new algorithm which can be used to compute n Lyapunov exponents for an n-dimensional switching system. We first study the geometric dynamics of two adjacent trajectories near the switching manifold, and obtain a compensation Jacobi matrix caused by switching. Then with QR-decomposition of this matrix, we compensate for the diagonal vector of R to realize the Lyapunov exponent expansion. Finally, we use the algorithm in a two-dimensional double-scrolls system, the Glass network and a spacecraft power system, and show its correctness and effectiveness by comparing the results with the Poincaré-map method.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61104150), the Science Fund for Distinguished Young Scholars of Chongqing, China (Grant No. cstc2013jcyjjq40001), and the Science and Technology Research Program of Education Committee of Chongqing, China (Grant No. KJ130517).
    [1]

    Yang X S 2009 Int. J. Bifurcat. Chaos 19 1127

    [2]

    Li Q D, Yang X S 2010 Int. J. Bifurcat. Chaos 20 467

    [3]

    Li Q D, Tang S 2013 Acta Phys. Sin. 62 020510 (in Chinese) [李清都, 唐宋 2013 物理学报 62 020510

    [4]

    Kaczyński T, Mischaikow K M, Mrozek M 2004 Comput. Homol. 157 100

    [5]

    Neumann N, Sattel T, Wallaschek J 2007 J. Vib. Control 13 1393

    [6]

    Yang F Y, Hu M, Yao S P 2013 Acta Phys. Sin. 62 100501 (in Chinese) [杨芳艳, 胡明, 姚尚平 2013 物理学报 62 100501]

    [7]

    Li Q D, Tan Y L, Yang F Y 2011 Acta Phys. Sin. 60 030206 (in Chinese) [李清都, 谭宇玲, 杨芳艳 2011 物理学报 60 030206]

    [8]

    Li Q D, Zhou H W, Yang X S 2012 Acta Phys. Sin. 61 040503 (in Chinese) [李清都, 周红伟, 杨晓松 2012 物理学报 61 040503]

    [9]

    Zhang H G, Fu J, Ma T D, Tong S C 2009 Chin. Phys. B 18 969

    [10]

    Wu L F, Guan Y, Liu Y 2013 Acta Phys. Sin. 62 110510 (in Chinese) [吴立峰, 关永, 刘勇 2013 物理学报 62 110510]

    [11]

    Ji Y, Bi Q S 2010 Acta Phys. Sin. 59 7612 (in Chinese) [季颖, 毕勤胜 2010 物理学报 59 7612 ]

    [12]

    Zhang X F, Chen X K, Bi Q S 2013 Acta Phys. Sin. 62 010502 (in Chinese) [张晓芳, 陈小可,毕勤胜 2013 物理学报 62 010502 ]

    [13]

    Gao C, Bi Q S, Zhang Z D 2013 Acta Phys. Sin. 62 020504 (in Chinese) [高超, 毕勤胜, 张正娣 2013 物理学报 62 020504 ]

    [14]

    Lin C S, Xiong X, Shi L, Liu Y Z, Jiang C S 2007 Acta Phys. Sin. 56 3107 [林长圣, 熊星, 石磊, 刘扬正, 姜长生 2007 物理学报 56 3107]

    [15]

    Li S R, Jian J G, Geng Y F 2009 J. Henan Normal Univ. (Nat. Sci. Ed.) 5 14 (in Chinese) [李圣荣, 蹇继贵, 耿艳峰 2009 河南师范大学学报 (自然学科版) 5 14]

    [16]

    Yu Y G, Li H X, Duan J 2009 Chaos Solitons Fract. 41 457

    [17]

    Chen W H, Guan Z H, Lu X M 2008 Asian J. Control 7 135

    [18]

    Wolf A, Swift J B, Swinney H L, Vastano J A 1985 Physica D 16 285

    [19]

    Galvanetto U 2000 Comput. Phys. Commun. 131 1

    [20]

    Stefański A, Kapitaniak T 2003 Chaos Solitons Fract. 15 233

    [21]

    Stefański A 2000 Chaos Solitons Fract. 11 2443

    [22]

    Stefański A, Kapitaniak T 2000 Discrete Dyn. Nat. Soc. 4 207

    [23]

    de Souza S L T, Caldas I L 2004 Chaos Solitons Fract. 19 569

    [24]

    Li Q D, Yang X S 2005 Acta Electron. Sin. 33 1299 (in Chinese) [李清都, 杨晓松 2005 电子学报 33 1299]

    [25]

    Kappler K, Edwards R, Glass L 2003 Signal Process. 83 789

    [26]

    Li Q D, Yang X S 2006 Chaos 16 033101

    [27]

    Lim Y H, Hamill D C 1999 Electron. Lett. 35 510

    [28]

    Li Q, Yang X S, Chen S 2011 Int. J. Bifurcat. Chaos 21 1719

  • [1]

    Yang X S 2009 Int. J. Bifurcat. Chaos 19 1127

    [2]

    Li Q D, Yang X S 2010 Int. J. Bifurcat. Chaos 20 467

    [3]

    Li Q D, Tang S 2013 Acta Phys. Sin. 62 020510 (in Chinese) [李清都, 唐宋 2013 物理学报 62 020510

    [4]

    Kaczyński T, Mischaikow K M, Mrozek M 2004 Comput. Homol. 157 100

    [5]

    Neumann N, Sattel T, Wallaschek J 2007 J. Vib. Control 13 1393

    [6]

    Yang F Y, Hu M, Yao S P 2013 Acta Phys. Sin. 62 100501 (in Chinese) [杨芳艳, 胡明, 姚尚平 2013 物理学报 62 100501]

    [7]

    Li Q D, Tan Y L, Yang F Y 2011 Acta Phys. Sin. 60 030206 (in Chinese) [李清都, 谭宇玲, 杨芳艳 2011 物理学报 60 030206]

    [8]

    Li Q D, Zhou H W, Yang X S 2012 Acta Phys. Sin. 61 040503 (in Chinese) [李清都, 周红伟, 杨晓松 2012 物理学报 61 040503]

    [9]

    Zhang H G, Fu J, Ma T D, Tong S C 2009 Chin. Phys. B 18 969

    [10]

    Wu L F, Guan Y, Liu Y 2013 Acta Phys. Sin. 62 110510 (in Chinese) [吴立峰, 关永, 刘勇 2013 物理学报 62 110510]

    [11]

    Ji Y, Bi Q S 2010 Acta Phys. Sin. 59 7612 (in Chinese) [季颖, 毕勤胜 2010 物理学报 59 7612 ]

    [12]

    Zhang X F, Chen X K, Bi Q S 2013 Acta Phys. Sin. 62 010502 (in Chinese) [张晓芳, 陈小可,毕勤胜 2013 物理学报 62 010502 ]

    [13]

    Gao C, Bi Q S, Zhang Z D 2013 Acta Phys. Sin. 62 020504 (in Chinese) [高超, 毕勤胜, 张正娣 2013 物理学报 62 020504 ]

    [14]

    Lin C S, Xiong X, Shi L, Liu Y Z, Jiang C S 2007 Acta Phys. Sin. 56 3107 [林长圣, 熊星, 石磊, 刘扬正, 姜长生 2007 物理学报 56 3107]

    [15]

    Li S R, Jian J G, Geng Y F 2009 J. Henan Normal Univ. (Nat. Sci. Ed.) 5 14 (in Chinese) [李圣荣, 蹇继贵, 耿艳峰 2009 河南师范大学学报 (自然学科版) 5 14]

    [16]

    Yu Y G, Li H X, Duan J 2009 Chaos Solitons Fract. 41 457

    [17]

    Chen W H, Guan Z H, Lu X M 2008 Asian J. Control 7 135

    [18]

    Wolf A, Swift J B, Swinney H L, Vastano J A 1985 Physica D 16 285

    [19]

    Galvanetto U 2000 Comput. Phys. Commun. 131 1

    [20]

    Stefański A, Kapitaniak T 2003 Chaos Solitons Fract. 15 233

    [21]

    Stefański A 2000 Chaos Solitons Fract. 11 2443

    [22]

    Stefański A, Kapitaniak T 2000 Discrete Dyn. Nat. Soc. 4 207

    [23]

    de Souza S L T, Caldas I L 2004 Chaos Solitons Fract. 19 569

    [24]

    Li Q D, Yang X S 2005 Acta Electron. Sin. 33 1299 (in Chinese) [李清都, 杨晓松 2005 电子学报 33 1299]

    [25]

    Kappler K, Edwards R, Glass L 2003 Signal Process. 83 789

    [26]

    Li Q D, Yang X S 2006 Chaos 16 033101

    [27]

    Lim Y H, Hamill D C 1999 Electron. Lett. 35 510

    [28]

    Li Q, Yang X S, Chen S 2011 Int. J. Bifurcat. Chaos 21 1719

  • [1] Ma Zhao-Zhao, Yang Qing-Chao, Zhou Rui-Ping. Lyapunov exponent algorithm based on perturbation theory for discontinuous systems. Acta Physica Sinica, 2021, 70(24): 240501. doi: 10.7498/aps.70.20210492
    [2] Wang Yue-E, Wu Bao-Wei, Wang Rui. Asynchronous stabilization of switched systems: Adjacent mode-dependent average dwell time. Acta Physica Sinica, 2015, 64(5): 050201. doi: 10.7498/aps.64.050201
    [3] Chen Zhang-Yao, Xue Zeng-Hong, Zhang Chun, Ji Ying, Bi Qin-Sheng. Oscillation behaviors and mechanism of Rayleigh oscillator with periodic switches. Acta Physica Sinica, 2014, 63(1): 010504. doi: 10.7498/aps.63.010504
    [4] Wu Hao, Hou Wei, Wang Wen-Xiang, Yan Peng-Cheng. Try to use Lyapunov exponent to discuss the abrupt climate change and its precursory signals. Acta Physica Sinica, 2013, 62(12): 129204. doi: 10.7498/aps.62.129204
    [5] Zhou Xiao-Yong, Qiao Xiao-Hua, Zhu Lei, Liu Su-Fen. A class of associated chaotic system, its switching and internal synchronization mechanism. Acta Physica Sinica, 2013, 62(19): 190504. doi: 10.7498/aps.62.190504
    [6] Wu Li-Feng, Guan Yong, Liu Yong. Complicated behaviors and non-smooth bifurcation of a switching system with piecewise linearchaotic circuit. Acta Physica Sinica, 2013, 62(11): 110510. doi: 10.7498/aps.62.110510
    [7] Zang Hong-Yan, Fan Xiu-Bin, Min Le-Quan, Han Dan-Dan. Research of Lyapunov exponent of S-boxes. Acta Physica Sinica, 2012, 61(20): 200508. doi: 10.7498/aps.61.200508
    [8] Gao Zai-Rui, Shen Yan-Xia, Ji Zhi-Cheng. Uniform finite-time stability of discrete-time switched descriptor systems. Acta Physica Sinica, 2012, 61(12): 120203. doi: 10.7498/aps.61.120203
    [9] Liu Yang-Zheng, Lin Chang-Sheng, Li Xin-Chao. Family of switched unified chaotic system. Acta Physica Sinica, 2011, 60(4): 040505. doi: 10.7498/aps.60.040505
    [10] Yu Si-Yao, Guo Shu-Xu, Gao Feng-Li. Calculation of the Lyapunov exponent for low frequency noise in semiconductor laser and chaos indentification. Acta Physica Sinica, 2009, 58(8): 5214-5217. doi: 10.7498/aps.58.5214
    [11] Yang Yong-Feng, Wu Ya-Feng, Ren Xing-Min, Qin Wei-Yang, Zhi Xi-Zhe, Qiu Yan. The largest Lyapunov prediction method for the end issue of empirical mode decomposition. Acta Physica Sinica, 2009, 58(6): 3742-3746. doi: 10.7498/aps.58.3742
    [12] He Si-Hua, Yang Shao-Qing, Shi Ai-Guo, Li Tian-Wei. Detection of ship targets on the sea surface based on Lyapunov exponents of image block. Acta Physica Sinica, 2009, 58(2): 794-801. doi: 10.7498/aps.58.794
    [13] Zhang Yong, Guan Wei. Predication of multivariable chaotic time series based on maximal Lyapunov exponent. Acta Physica Sinica, 2009, 58(2): 756-763. doi: 10.7498/aps.58.756
    [14] Liu Hui-Shi, Xin Xiang-Jun, Yin Xiao-Li, Yu Chong-Xiu, Zhang Qi. An optimization scheme for generating of Chebyshev optical chaotic sequence. Acta Physica Sinica, 2009, 58(4): 2231-2234. doi: 10.7498/aps.58.2231
    [15] Liu Yang-Zheng, Jiang Chang-Sheng. Building and analysis of properties of a class of correlative and switchable hyperchaotic system. Acta Physica Sinica, 2009, 58(2): 771-778. doi: 10.7498/aps.58.771
    [16] Zhang Xiao-Dan, Liu Xiang, Zhao Pin-Dong. Methods for calculating the main-axis Lyapunov exponents of a type of chaotic systems with delay. Acta Physica Sinica, 2009, 58(7): 4415-4420. doi: 10.7498/aps.58.4415
    [17] Liu Yang-Zheng, Jiang Chang-Sheng, Lin Chang-Sheng, Xiong Xing, Shi Lei. A class of switchable 3D chaotic systems. Acta Physica Sinica, 2007, 56(6): 3107-3112. doi: 10.7498/aps.56.3107
    [18] Liu Yang-Zheng, Jiang Chang-Sheng, Lin Chang-Sheng, Sun Han. Four-dimensional switchable hyperchaotic system. Acta Physica Sinica, 2007, 56(9): 5131-5135. doi: 10.7498/aps.56.5131
    [19] Ma Jun, Liao Gao-Hua, Mo Xiao-Hua, Li Wei-Xue, Zhang Ping-Wei. Hyperchaos synchronization and control using intermittent feedback. Acta Physica Sinica, 2005, 54(12): 5585-5590. doi: 10.7498/aps.54.5585
    [20] Sheng Li-Yuan, Sun Ke-Hui, Li Chuan-Bing. Study of a discrete chaotic system based on tangent-delay for elliptic reflecting cavity and its properties. Acta Physica Sinica, 2004, 53(9): 2871-2876. doi: 10.7498/aps.53.2871
Metrics
  • Abstract views:  7133
  • PDF Downloads:  881
  • Cited By: 0
Publishing process
  • Received Date:  09 December 2013
  • Accepted Date:  09 January 2014
  • Published Online:  05 May 2014

/

返回文章
返回