Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Computational study of structures and electronic properties of SimGen (m+n=9) clusters

Wu Li-Jun Sui Qiang-Tao Zhang Duo Zhang Lin Qi Yang

Citation:

Computational study of structures and electronic properties of SimGen (m+n=9) clusters

Wu Li-Jun, Sui Qiang-Tao, Zhang Duo, Zhang Lin, Qi Yang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The researches of the structural and electronic properties of silicon and germanium clusters are of great significance for developing novel microelectronic materials. This paper aims to study the geometric structures and electronic properties of SimGen (m+n=9) clusters by combining genetic algorithm and density functional tight binding method. The study shows that there are two low energy stable atomic stacking configurations for SimGen(m+n = 9) clusters: one is a pentagon double cone stacking two small adjacent pyramids, the other is a tetrahedron close packing with a Ge atom on a bridge. Both stacking configurations are changed greatly with gradually increasing the Ge atom number in the cluster. The shape of the lowest-energy configuration changes from the pentagon double cone stacking two adjacent pyramids on the same side into the pentagon double cone stacking two adjacent pyramids on both sides of the up and down. With this change, the electron distribution and the gap of the highest occupied molecular orbital and the lowest unoccupied molecular orbital gap are obviously dependent on the difference in components of Ge and Si elements contained.
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2011CB606403), the Fundamental Research Funds for the Central Universities, China (Grant No. N110205001), and the National Natural Science Foundation of China (Grant No. 51171044).
    [1]

    Liptak R W, Campbell S A, Kortshagen U 2009 Nanotechnology 20 035603

    [2]

    Morales A M, Lieber C M 1998 Science 279 208

    [3]

    Cui Y, Lieber C M 2001 Science 291 851

    [4]

    Wagner R S, Ellis W C 1964 Appl. Phys. Lett. 4 89

    [5]

    Pan Z W, Lar H, Au F C K 2000 Adv. Mater. 12 1186

    [6]

    Honing R E 1954 J. Chem. Phys. 22 1610

    [7]

    Bloomfied L A, Freeman R R, Brown W L 1985 Phys. Rev. Lett. 54 2246

    [8]

    Bloomfied L A, Geusic M E, Freeman R R, Brown W L 1985 Chem. Phys. Lett. 121 33

    [9]

    Heath J R, Liu Y, O'Brien S C, Zhang Q L, Curl R F, Tittel F K, Smalley R E 1985 J. Chem. Phys. 83 5520

    [10]

    Honea E C, Ogura A, Murray C A, Raghavachari K, Sprenger W O, Jarrold M F, Brown W L 1993 Nature 366 42

    [11]

    Arnold C C, Neumark D M 1993 J. Chem. Phys. 99 3353

    [12]

    Hunter J M, Fye L J, Jarrold M F, Bower J E 1994 Phys. Rev. Lett. 73 2063

    [13]

    Jarrold M F, Constant V A 1991 Phys. Rev. Lett. 67 2994

    [14]

    Jarrold M F, Bower J E 1992 J. Chem. Phys. 96 9180

    [15]

    Raghavachari K 1986 J. Chem. Phys. 84 5672

    [16]

    Dai Z X, Shi X Q, Zheng X H, Wang X L, Zeng Z 2007 Phys. Rev. B 75 155402

    [17]

    Aristides D Z 2001 Phys. Rev. A 64 023202

    [18]

    Zhu X L, Zeng X C 2003 J. Chem. Phys. 118 3558

    [19]

    Tsong T T 1984 Appl. Phys. Lett. 45 1149

    [20]

    Tsong T T 1984 Phys. Rev. B 30 4946

    [21]

    Yoo S, Zeng X C 2003 J. Chem. Phys. 119 1442

    [22]

    Yoo S, Zeng X C 2005 J. Chem. Phys. 123 164303

    [23]

    Yoo S, Zeng X C 2006 J. Chem. Phys. 124 054304

    [24]

    Yoo S, Zhao J J, Wang J L, Zeng X C 2004 J. Am. Chem. Soc. 126 13845

    [25]

    Yoo S, Shao N, Koehler C, Fraunhaum T, Zeng X C 2006 J. Chem. Phys. 124 164311

    [26]

    Qin W, Lu W C, Zhao L Z, Zang Q J, Wang C Z, Ho K M 2009 J. Phys.: Condens. Matter 21 455501

    [27]

    Bing D, Nguyen Q C, Fan X F, Kuo J L 2008 J. Phys. Chem. A 112 2235

    [28]

    Marim L R, Ueno L T, Machado F B C, Dal Pino Jr A 2007 Phys. Stat. Sol. B 244 3601

    [29]

    Rehman H, Springborg M, Dong Y 2009 Eur. Phys. J. D 52 39

    [30]

    Rehman H, Springborg M, Dong Y 2011 J. Phys. Chem. A 115 2005

    [31]

    Asaduzzaman A M, Springborg M 2006 Phys. Rev. B 74 165406

    [32]

    Asaduzzaman A M, Springborg M 2007 Eur. Phys. J. D 43 213

    [33]

    Porezag D, Frauenheim Th, Köhler T, Seifert G, Kaschner R 1995 Phys. Rev. B 51 12947

    [34]

    Elstner M, Porezag D, Jungnickel G, Elstner J, Haugk M, Frauenheim T, Suhai S, Seifert G 1998 Phys. Rev. B 58 7260

    [35]

    Seifert G, Porezag D, Frauenheim T 1996 Int. J. Quantum Chem. 58 185

    [36]

    Yuan Y, Cheng J L 2012 J. Chem. Phys. 137 044308

    [37]

    Ren L, Cheng L J, Feng Y, Wang X M 2012 J. Chem. Phys. 137 014309

    [38]

    Li R, Cheng L J 2012 Comput. Theor. Chem. 996 125

    [39]

    Yuan Y, Cheng J L 2013 Int. J. Quantum Chem. 113 1264

    [40]

    Li L F, Cheng L J 2013 J. Chem. Phys. 138 094312

    [41]

    Cheng L J, Yang J L 2013 J. Chem. Phys. 138 141101

    [42]

    Zhao Z Y, Yi J, Zhou D C 2014 Chin. Phys. B 23 017401

    [43]

    Bazterra V E, Ona O, Caputo M C, Ferraro M B, Fuentealba P, Facelli J C 2004 Phys. Rev. A 69 53202

    [44]

    Marin L R, Lemes M R, Dal Pino Jr A 2006 Phys. Stat. Sol. B 243 449

    [45]

    Zhao L Z, Lu W C, Qin W, Zang Q J, Wang C Z, Ho K M 2008 Chem. Phys. Lett. 455 225

    [46]

    Weber J, Alonso M I 1989 Phys. Rev. B 40 5683

  • [1]

    Liptak R W, Campbell S A, Kortshagen U 2009 Nanotechnology 20 035603

    [2]

    Morales A M, Lieber C M 1998 Science 279 208

    [3]

    Cui Y, Lieber C M 2001 Science 291 851

    [4]

    Wagner R S, Ellis W C 1964 Appl. Phys. Lett. 4 89

    [5]

    Pan Z W, Lar H, Au F C K 2000 Adv. Mater. 12 1186

    [6]

    Honing R E 1954 J. Chem. Phys. 22 1610

    [7]

    Bloomfied L A, Freeman R R, Brown W L 1985 Phys. Rev. Lett. 54 2246

    [8]

    Bloomfied L A, Geusic M E, Freeman R R, Brown W L 1985 Chem. Phys. Lett. 121 33

    [9]

    Heath J R, Liu Y, O'Brien S C, Zhang Q L, Curl R F, Tittel F K, Smalley R E 1985 J. Chem. Phys. 83 5520

    [10]

    Honea E C, Ogura A, Murray C A, Raghavachari K, Sprenger W O, Jarrold M F, Brown W L 1993 Nature 366 42

    [11]

    Arnold C C, Neumark D M 1993 J. Chem. Phys. 99 3353

    [12]

    Hunter J M, Fye L J, Jarrold M F, Bower J E 1994 Phys. Rev. Lett. 73 2063

    [13]

    Jarrold M F, Constant V A 1991 Phys. Rev. Lett. 67 2994

    [14]

    Jarrold M F, Bower J E 1992 J. Chem. Phys. 96 9180

    [15]

    Raghavachari K 1986 J. Chem. Phys. 84 5672

    [16]

    Dai Z X, Shi X Q, Zheng X H, Wang X L, Zeng Z 2007 Phys. Rev. B 75 155402

    [17]

    Aristides D Z 2001 Phys. Rev. A 64 023202

    [18]

    Zhu X L, Zeng X C 2003 J. Chem. Phys. 118 3558

    [19]

    Tsong T T 1984 Appl. Phys. Lett. 45 1149

    [20]

    Tsong T T 1984 Phys. Rev. B 30 4946

    [21]

    Yoo S, Zeng X C 2003 J. Chem. Phys. 119 1442

    [22]

    Yoo S, Zeng X C 2005 J. Chem. Phys. 123 164303

    [23]

    Yoo S, Zeng X C 2006 J. Chem. Phys. 124 054304

    [24]

    Yoo S, Zhao J J, Wang J L, Zeng X C 2004 J. Am. Chem. Soc. 126 13845

    [25]

    Yoo S, Shao N, Koehler C, Fraunhaum T, Zeng X C 2006 J. Chem. Phys. 124 164311

    [26]

    Qin W, Lu W C, Zhao L Z, Zang Q J, Wang C Z, Ho K M 2009 J. Phys.: Condens. Matter 21 455501

    [27]

    Bing D, Nguyen Q C, Fan X F, Kuo J L 2008 J. Phys. Chem. A 112 2235

    [28]

    Marim L R, Ueno L T, Machado F B C, Dal Pino Jr A 2007 Phys. Stat. Sol. B 244 3601

    [29]

    Rehman H, Springborg M, Dong Y 2009 Eur. Phys. J. D 52 39

    [30]

    Rehman H, Springborg M, Dong Y 2011 J. Phys. Chem. A 115 2005

    [31]

    Asaduzzaman A M, Springborg M 2006 Phys. Rev. B 74 165406

    [32]

    Asaduzzaman A M, Springborg M 2007 Eur. Phys. J. D 43 213

    [33]

    Porezag D, Frauenheim Th, Köhler T, Seifert G, Kaschner R 1995 Phys. Rev. B 51 12947

    [34]

    Elstner M, Porezag D, Jungnickel G, Elstner J, Haugk M, Frauenheim T, Suhai S, Seifert G 1998 Phys. Rev. B 58 7260

    [35]

    Seifert G, Porezag D, Frauenheim T 1996 Int. J. Quantum Chem. 58 185

    [36]

    Yuan Y, Cheng J L 2012 J. Chem. Phys. 137 044308

    [37]

    Ren L, Cheng L J, Feng Y, Wang X M 2012 J. Chem. Phys. 137 014309

    [38]

    Li R, Cheng L J 2012 Comput. Theor. Chem. 996 125

    [39]

    Yuan Y, Cheng J L 2013 Int. J. Quantum Chem. 113 1264

    [40]

    Li L F, Cheng L J 2013 J. Chem. Phys. 138 094312

    [41]

    Cheng L J, Yang J L 2013 J. Chem. Phys. 138 141101

    [42]

    Zhao Z Y, Yi J, Zhou D C 2014 Chin. Phys. B 23 017401

    [43]

    Bazterra V E, Ona O, Caputo M C, Ferraro M B, Fuentealba P, Facelli J C 2004 Phys. Rev. A 69 53202

    [44]

    Marin L R, Lemes M R, Dal Pino Jr A 2006 Phys. Stat. Sol. B 243 449

    [45]

    Zhao L Z, Lu W C, Qin W, Zang Q J, Wang C Z, Ho K M 2008 Chem. Phys. Lett. 455 225

    [46]

    Weber J, Alonso M I 1989 Phys. Rev. B 40 5683

  • [1] Gao Ming, Deng Yong-He, Wen Da-Dong, Tian Ze-An, Zhao He-Ping, Peng Ping. Evolution characteristics and hereditary mechanisms of clusters in rapidly solidified Pd82Si18 alloy. Acta Physica Sinica, 2020, 69(4): 046401. doi: 10.7498/aps.69.20190970
    [2] Luo Qiang, Yang Heng, Guo Ping, Zhao Jian-Fei. Density functional theory calculation of structure and electronic properties in N-methane hydrate. Acta Physica Sinica, 2019, 68(16): 169101. doi: 10.7498/aps.68.20182230
    [3] Zhang Xiu-Rong, Wang Yang-Yang, Li Wei-Jun, Yuan Ai-Hua. Density functional theory study of the adsorption of CO on Wn (n= 16) clusters. Acta Physica Sinica, 2013, 62(5): 053603. doi: 10.7498/aps.62.053603
    [4] Ruan Wen, Xie An-Dong, Yu Xiao-Guang, Wu Dong-Lan. Geometric structure and electronic characteristics of NaBn (n=19) clusters. Acta Physica Sinica, 2012, 61(4): 043102. doi: 10.7498/aps.61.043102
    [5] Ge Gui-Xian, Yan Hong-Xia, Jing Qun, Zhang Jian-Jun. Density functional theory study on the structure and electronicproperties of Aun Sc3 (n =1—7) clusters. Acta Physica Sinica, 2011, 60(3): 033101. doi: 10.7498/aps.60.033101
    [6] Ge Gui-Xian, Jing Qun, Cao Hai-Bin, Yang Zeng-Qiang, Tang Guang-Hui, Yan Hong-Xia. The study on structures and properties of Run and Run Au(n=112) clusters by density functional theory. Acta Physica Sinica, 2011, 60(10): 103102. doi: 10.7498/aps.60.103102
    [7] Gao Hong, Zhu Wei-Hua, Tang Chun-Mei, Geng Fang-Fang, Yao Chang-Da, Xu Yun-Ling, Deng Kai-Ming. Density functional calculation on the geometric structure and electronic properties of the endohedral fullerene N2@C60. Acta Physica Sinica, 2010, 59(3): 1707-1711. doi: 10.7498/aps.59.1707
    [8] Fan Qin-Na, Li Wei, Zhang Lin. Molecular dynamics study of relaxation and local structure changes in a rapidly quenched molten Cu57 cluster. Acta Physica Sinica, 2010, 59(4): 2428-2433. doi: 10.7498/aps.59.2428
    [9] Ge Gui-Xian, Yang Zeng-Qiang, Cao Hai-Bin. Density functional study of the interaction of CO with nickel clusters. Acta Physica Sinica, 2009, 58(9): 6128-6133. doi: 10.7498/aps.58.6128
    [10] Zhao Qian, Zhang Lin, Qi Yang, Zhang Zong-Ning. Molecular dynamics study of structures of a Cu13 cluster supported on a Cu(001) surface at low temperatures. Acta Physica Sinica, 2009, 58(13): 47-S52. doi: 10.7498/aps.58.47
    [11] Zhang Lin, Zhang Cai-Bei, Qi Yang. Molecular dynamics study on structural change of a Au959 cluster supported on MgO(100) surface at low temperature. Acta Physica Sinica, 2009, 58(13): 53-S57. doi: 10.7498/aps.58.53
    [12] Zhang Lin, Xu Song-Ning, Li Wei, Sun Hai-Xia, Zhang Cai-Bei. Structural changes during freezing and coalescing of small sized clusters on atomic scale. Acta Physica Sinica, 2009, 58(13): 58-S66. doi: 10.7498/aps.58.58
    [13] Li Xi-Bo, Wang Hong-Yan, Luo Jiang-Shan, Wu Wei-Dong, Tang Yong-Jian. Density functional theory study of the geometry, stability and electronic properties of ScnO(n=1—9) clusters. Acta Physica Sinica, 2009, 58(9): 6134-6140. doi: 10.7498/aps.58.6134
    [14] Xu Song-Ning, Zhang Lin, Zhang Cai-Bei, Qi Yang. Molecular dynamics simulations of a molten Cu55 cluster embedded in face-centred cubic bulk during. Acta Physica Sinica, 2009, 58(13): 40-S46. doi: 10.7498/aps.58.40
    [15] Yang Ming, Liu Jian-Sheng, Cai Yi, Wang Wen-Tao, Wang Cheng, Ni Guo-Quan, Li Ru-Xin, Xu Zhi-Zhan. Diagnosis and investigation of the formation of low density and large sized clusters. Acta Physica Sinica, 2008, 57(1): 176-180. doi: 10.7498/aps.57.176
    [16] Ge Gui-Xian, Luo You-Hua. Density functional theory study of the structure and electronic properties of MgnOn(n=2—8) clusters. Acta Physica Sinica, 2008, 57(8): 4851-4856. doi: 10.7498/aps.57.4851
    [17] Li Xi-Bo, Luo Jiang-Shan, Guo Yun-Dong, Wu Wei-Dong, Wang Hong-Yan, Tang Yong-Jian. Density functional theory study of the stability, electronic and magnetic properties of Scn, Yn and Lan (n=2—10) clusters. Acta Physica Sinica, 2008, 57(8): 4857-4865. doi: 10.7498/aps.57.4857
    [18] Wang Qing-Lin, Ge Gui-Xian, Zhao Wen-Jie, Lei Xue-Ling, Yan Yu-Li, Yang Zhi, Luo You-Hua. Density functional theory study on the structure and properties of CoBen(n=1—12) clusters. Acta Physica Sinica, 2007, 56(6): 3219-3226. doi: 10.7498/aps.56.3219
    [19] Yuan Yong-Bo, Liu Yu-Zhen, Deng Kai-Ming, Yang Jin-Long. Assignment of photoelectron spectra of SiN cluster. Acta Physica Sinica, 2006, 55(9): 4496-4500. doi: 10.7498/aps.55.4496
    [20] Hao Jing-An, Zheng Hao-Ping. Theoretical calculation of structures and properties of Ga6N6 cluster. Acta Physica Sinica, 2004, 53(4): 1044-1049. doi: 10.7498/aps.53.1044
Metrics
  • Abstract views:  6240
  • PDF Downloads:  301
  • Cited By: 0
Publishing process
  • Received Date:  04 August 2014
  • Accepted Date:  11 September 2014
  • Published Online:  05 February 2015

/

返回文章
返回