Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Spectrum handoff model based on preemptive queuing theory in cognitive radio networks

Yang Xiao-Long Tan Xue-Zhi Guan Kai

Citation:

Spectrum handoff model based on preemptive queuing theory in cognitive radio networks

Yang Xiao-Long, Tan Xue-Zhi, Guan Kai
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Cognitive radio can significantly improve spectrum efficiency by temporarily sharing under-utilized licensed frequency with primary users. Its spectrum management framework consists of four parts: spectrum sensing, spectrum decision, spectrum sharing and spectrum handoff. The last part is what we focus on in this paper. Spectrum handoff, which aims at guaranteeing requirement for service of secondary users and shortening time delay produced by interruption from primary users, is an important functionality of cognitive radio networks. For solving the problem of optimizing the extended data delivery time, a spectrum handoff model is proposed based on the preemptive resume priority M/G/m queuing theory. In order to minimize the extended data delivery time, the queuing method with mixed queuing and parallel service is adopted. In this model, each channel has its own high-priority queue and there is only one low-priority queue for all secondary users. The primary and secondary users respectively enter into the high-priority and low-priority queue to establish corresponding primary connections and secondary connections and execute corresponding data transmission. On the above basis, secondary users’ channel usage behaviors are thoroughly analyzed in the cases of multiple secondary users, multiple licensed channels and multiple spectrum handoffs. In this process, when multiple interruptions occur, the secondary user will stay on the current channel and suspend data transmission until primary users finish their data transmission, otherwise the secondary user will switch from the current channel to the predetermined target channel to resume his unfinished data transmission. The target channel is sequentially obtained from the target channel sequence, which is determined by channel parameter estimation algorithm. Based on the analysis of channel usage behaviors for secondary users, the total time delay caused by spectrum handoffs within the whole data transmission process is derived first. The total time delay can be deduced from two scenarios. One is that the target channel is the current channel. For this reason, the total time delay equals transmission time of primary users in high-priority queue. Obviously, the other is that the target channel is not the current channel. Thus, the total time delay equals the sum of transmission times of primary users in high-priority and secondary users ahead in low-priority. In addition, appearance of new primary users should also be considered in the data transmission process. Then, expressions of the extended data delivery time in two different cases (i. e. always-staying strategy and always-changing strategy) are respectively derived. Furthermore, the adaptive spectrum handoff strategy is finally discussed, which is to choose the optimal scheme from always-staying and always-changing strategy when a spectrum handoff happens. Simulation results verify that this model can not only describe handoff behaviors of secondary users more perfectly, but also can make the transmission time delay smaller and make the extended data delivery time shorter than the existing spectrum handoff model. Especially, with the increase of service intensity of primary users, the advantages of the proposed spectrum handoff model are more outstanding. In addition, the allowable secondary user service intensity is improved and the receptive number of secondary user is increased in cognitive radio networks. All in all, the proposed spectrum handoff model improves the performance of spectrum handoff, increases the capacity of cognitive radio networks and optimally realizes spectrum sharing between secondary users and primary users.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61071104), and the National Science and Technology Major Project of the Ministry of Science and Technology of China (Grant No. 2011ZX03004-006).
    [1]

    Wang B B, Liu K J R 2011 IEEE J. Sel. Topics Signal Process. 5 5

    [2]

    Wang L C, Wang C W, Chang C J 2012 IEEE Trans. Commun. 60 2444

    [3]

    Li Q C, Niu H N, Papathanassiou A T, Wu G 2014 IEEE Veh. Technol. Mag. 9 71

    [4]

    Bhushan N, Li J Y, Malladi D, Gilmore R, Brenner D, Damnjanovic A, Sukhavasi R, Patel C, Geirhofe S 2014 IEEE Commun. Mag. 52 82

    [5]

    Zu Y X, Zhou J, Zeng C C 2010 Chin. Phys. B 19 119501

    [6]

    Zhang X J, Lu Y, Tian F, Sun Z X, Cheng X F 2014 Acta Phys. Sin. 63 078401 (in Chinese) [张学军, 鲁友, 田峰, 孙知信, 成谢锋 2014 物理学报 63 078401]

    [7]

    Zu Y X, Zhou J 2012 Chin. Phys. B 21 019501

    [8]

    Gavrilovska L, Atanasovski V, Macaluso I, DaSilva L A 2013 IEEE Commun. Surveys Tut. 15 1761

    [9]

    Qi P H, Li Z, Si J B, Gao R 2014 Chin. Phys. B 23 128401

    [10]

    Bansal T, Li D, Sinha P 2014 IEEE Trans. Mobile Comput. 13 852

    [11]

    Chai Z Y, Wang B, Li Y L 2014 Acta Phys. Sin. 63 228802 (in Chinese) [柴争义, 王秉, 李亚伦 2014 物理学报 63 228802]

    [12]

    Christian I, Moh S, Chung I, Lee J Y 2012 IEEE Commun. Mag. 50 114

    [13]

    Msumba J A, Xu H 2013 IEEE Africon 2013 Mauritius, Sept. 9-12, 2013 p1

    [14]

    Romero J, Sallent O, Umbert A 2013 IEEE 24th International Symposium on Personal Indoor and Mobile Radio Communications London, United Kingdom Sept. 8-11, 2013 p2512

    [15]

    Li C P, Neely M J 2011 IEEE International Symposium on Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks Princeton, New Jersey May 9-13, 2011 p401

    [16]

    Xu Y H, Anpalagan A, Wu Q H, Shen L, Gao Z, Wang J L 2013 IEEE Commun. Surveys Tut. 15 1689

    [17]

    Li X, Zhao Q H, Guan X H, Tong L 2011 IEEE J. Sel. Areas Commun. 29 746

    [18]

    Nejatian S, Syed-Yusof S K, Latiff N M A, Asadpour V 2013 IEEE 24th International Symposium on Personal Indoor and Mobile Radio Communications London, United Kingdom Sept. 8-11, 2013 p2887

    [19]

    Liu J, Chen W, Cao Z, Zhang Y J 2012 IET Communications 6 945

    [20]

    Wang J, Huang A P, Wang W, Quek T Q S 2013 IEEE Wireless Commun. Lett. 2 175

    [21]

    Wang L C, Wang C W, Chang C J 2012 IEEE Trans. Mobile Comput. 11 1499

    [22]

    Wang C W, Wang L C 2012 IEEE J. Sel. Areas Commun. 30 2016

    [23]

    Liu Y, Tamma B R, Manoj B S, Rao R 2010 INFOCOM IEEE Conference on Computer Communications Workshops San Diego, USA March 15-19, 2010 p1

    [24]

    Wu C, Jiang H, You X J 2014 Acta Phys. Sin. 63 088801 (in Chinese) [伍春, 江虹, 尤晓建 2014 物理学报 63 088801]

    [25]

    Bose S K 2002 An Introduction to Queuing Systems (New York: Kluwer Academic/Plenum) pp168-169

  • [1]

    Wang B B, Liu K J R 2011 IEEE J. Sel. Topics Signal Process. 5 5

    [2]

    Wang L C, Wang C W, Chang C J 2012 IEEE Trans. Commun. 60 2444

    [3]

    Li Q C, Niu H N, Papathanassiou A T, Wu G 2014 IEEE Veh. Technol. Mag. 9 71

    [4]

    Bhushan N, Li J Y, Malladi D, Gilmore R, Brenner D, Damnjanovic A, Sukhavasi R, Patel C, Geirhofe S 2014 IEEE Commun. Mag. 52 82

    [5]

    Zu Y X, Zhou J, Zeng C C 2010 Chin. Phys. B 19 119501

    [6]

    Zhang X J, Lu Y, Tian F, Sun Z X, Cheng X F 2014 Acta Phys. Sin. 63 078401 (in Chinese) [张学军, 鲁友, 田峰, 孙知信, 成谢锋 2014 物理学报 63 078401]

    [7]

    Zu Y X, Zhou J 2012 Chin. Phys. B 21 019501

    [8]

    Gavrilovska L, Atanasovski V, Macaluso I, DaSilva L A 2013 IEEE Commun. Surveys Tut. 15 1761

    [9]

    Qi P H, Li Z, Si J B, Gao R 2014 Chin. Phys. B 23 128401

    [10]

    Bansal T, Li D, Sinha P 2014 IEEE Trans. Mobile Comput. 13 852

    [11]

    Chai Z Y, Wang B, Li Y L 2014 Acta Phys. Sin. 63 228802 (in Chinese) [柴争义, 王秉, 李亚伦 2014 物理学报 63 228802]

    [12]

    Christian I, Moh S, Chung I, Lee J Y 2012 IEEE Commun. Mag. 50 114

    [13]

    Msumba J A, Xu H 2013 IEEE Africon 2013 Mauritius, Sept. 9-12, 2013 p1

    [14]

    Romero J, Sallent O, Umbert A 2013 IEEE 24th International Symposium on Personal Indoor and Mobile Radio Communications London, United Kingdom Sept. 8-11, 2013 p2512

    [15]

    Li C P, Neely M J 2011 IEEE International Symposium on Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks Princeton, New Jersey May 9-13, 2011 p401

    [16]

    Xu Y H, Anpalagan A, Wu Q H, Shen L, Gao Z, Wang J L 2013 IEEE Commun. Surveys Tut. 15 1689

    [17]

    Li X, Zhao Q H, Guan X H, Tong L 2011 IEEE J. Sel. Areas Commun. 29 746

    [18]

    Nejatian S, Syed-Yusof S K, Latiff N M A, Asadpour V 2013 IEEE 24th International Symposium on Personal Indoor and Mobile Radio Communications London, United Kingdom Sept. 8-11, 2013 p2887

    [19]

    Liu J, Chen W, Cao Z, Zhang Y J 2012 IET Communications 6 945

    [20]

    Wang J, Huang A P, Wang W, Quek T Q S 2013 IEEE Wireless Commun. Lett. 2 175

    [21]

    Wang L C, Wang C W, Chang C J 2012 IEEE Trans. Mobile Comput. 11 1499

    [22]

    Wang C W, Wang L C 2012 IEEE J. Sel. Areas Commun. 30 2016

    [23]

    Liu Y, Tamma B R, Manoj B S, Rao R 2010 INFOCOM IEEE Conference on Computer Communications Workshops San Diego, USA March 15-19, 2010 p1

    [24]

    Wu C, Jiang H, You X J 2014 Acta Phys. Sin. 63 088801 (in Chinese) [伍春, 江虹, 尤晓建 2014 物理学报 63 088801]

    [25]

    Bose S K 2002 An Introduction to Queuing Systems (New York: Kluwer Academic/Plenum) pp168-169

  • [1] Chai Zheng-Yi, Wang Bing, Li Ya-Lun. Spectrum allocation of cognitive radio network based on artificial physics optimization. Acta Physica Sinica, 2014, 63(22): 228802. doi: 10.7498/aps.63.228802
    [2] Zhang Yao-Li, Wu Bao-Wei, Wang Yue-E, Han Xiao-Xia. Finite-time stability for switched singular systems. Acta Physica Sinica, 2014, 63(17): 170205. doi: 10.7498/aps.63.170205
    [3] Zheng Shi-Lian, Yang Xiao-Niu, Zhao Zhi-Jin. Reconstruction verification for random demodulator based compressed sampling. Acta Physica Sinica, 2014, 63(22): 228401. doi: 10.7498/aps.63.228401
    [4] Gao Hong-Yuan, Li Chen-Wan. Membrane-inspired quantum bee colony algorithm for multiobjective spectrum allocation. Acta Physica Sinica, 2014, 63(12): 128802. doi: 10.7498/aps.63.128802
    [5] Zhang Xue-Jun, Lu You, Tian Feng, Sun Zhi-Xin, Cheng Xie-Feng. Double-threshold cooperative spectrum sensing for cognitive radio based on trust. Acta Physica Sinica, 2014, 63(7): 078401. doi: 10.7498/aps.63.078401
    [6] Yin Cong, Tan Xue-Zhi, Ma Lin, Yu Yang. Global proportional fairness scheduling algorithm based on spectrum aggregation in cognitive radio. Acta Physica Sinica, 2014, 63(11): 118402. doi: 10.7498/aps.63.118402
    [7] Jiang Hong, Liu Cong-Bin, Wu Chun. Crosslayer parameter configuration for TCP throughput improvement in cognitive radio networks. Acta Physica Sinica, 2013, 62(3): 038804. doi: 10.7498/aps.62.038804
    [8] Liu Yun, Peng Qi-Cong, Shao Huai-Zong, Peng Qi-Hang, Wang Ling. A novel spectrum detecting algorithm for cognitive radio based on the characteristics of authorized channel. Acta Physica Sinica, 2013, 62(7): 078406. doi: 10.7498/aps.62.078406
    [9] Zheng Shi-Lian, Yang Xiao-Niu. Swarm initialization of shuffled frog leaping algorithm for cooperative spectrum sensing in cognitive radio. Acta Physica Sinica, 2013, 62(7): 078405. doi: 10.7498/aps.62.078405
    [10] Gao Zai-Rui, Shen Yan-Xia, Ji Zhi-Cheng. Uniform finite-time stability of discrete-time switched descriptor systems. Acta Physica Sinica, 2012, 61(12): 120203. doi: 10.7498/aps.61.120203
    [11] Zheng Shi-Lian, Yang Xiao-Niu. Parameter adaptation in green cognitive radio. Acta Physica Sinica, 2012, 61(14): 148402. doi: 10.7498/aps.61.148402
    [12] Guo Peng, Xu Xian-Sheng, Huang Si-Xun, Xiang Jie. Comparison between sliding spectral method and back propagation method for radio occultation data. Acta Physica Sinica, 2011, 60(9): 099202. doi: 10.7498/aps.60.099202
    [13] Zu Yun-Xiao, Zhou Jie. Cognitive radio resource allocation based on combined chaotic genetic algorithm. Acta Physica Sinica, 2011, 60(7): 079501. doi: 10.7498/aps.60.079501
    [14] Zhou Jie, Zu Yun-Xiao. A parallel immune genetic algorithm in adaptive resource allocation for cognitive radio network. Acta Physica Sinica, 2010, 59(10): 7508-7515. doi: 10.7498/aps.59.7508
    [15] Zheng Shi-Lian, Lou Cai-Yi, Yang Xiao-Niu. Cooperative spectrum sensing for cognitive radios based on a modified shuffled frog leaping algorithm. Acta Physica Sinica, 2010, 59(5): 3611-3617. doi: 10.7498/aps.59.3611
    [16] Zhao Zhi-Jin, Xu Shi-Yu, Zheng Shi-Lian, Yang Xiao-Niu. Cognitive radio decision engine based on binary particle swarm optimization. Acta Physica Sinica, 2009, 58(7): 5118-5125. doi: 10.7498/aps.58.5118
    [17] Zhao Zhi-Jin, Peng Zhen, Zheng Shi-Lian, Xu Shi-Yu, Lou Cai-Yi, Yang Xiao-Niu. Cognitive radio spectrum assignment based on quantum genetic algorithm. Acta Physica Sinica, 2009, 58(2): 1358-1363. doi: 10.7498/aps.58.1358
    [18] Zhao Zhi-Jin, Zheng Shi-Lian, Shang Jun-Na, Kong Xian-Zheng. A study of cognitive radio decision engine based on quantum genetic algorithm. Acta Physica Sinica, 2007, 56(11): 6760-6766. doi: 10.7498/aps.56.6760
    [19] Wang Xiao-Min, Zhang Jia-Shu, Zhang Wen-Fang. One way Hash function construction based on the extended chaotic maps switch. Acta Physica Sinica, 2003, 52(11): 2737-2742. doi: 10.7498/aps.52.2737
    [20] ZHANG JIA-SHU, XIAO XIAN-CI. CHAOTIC SYNCHRONIZATION SECURE COMMUNICATIONS BASED ON THE EXTENDED CHAOTIC MAPS SWITCH. Acta Physica Sinica, 2001, 50(11): 2121-2125. doi: 10.7498/aps.50.2121
Metrics
  • Abstract views:  6317
  • PDF Downloads:  821
  • Cited By: 0
Publishing process
  • Received Date:  24 September 2014
  • Accepted Date:  08 December 2014
  • Published Online:  05 May 2015

/

返回文章
返回