-
Because the weather conditions in different sea areas are different, the evaporation duct occurring over a large sea surface is normally regional and range-dependent. This property results in the fact that the radio wave propagation within the environment of this type is distinct from that within the range-independent evaporation duct environment. Therefore, it is meaningful to perform the regional range-dependent evaporation duct inversion for accurately predicting radio wave propagation and improving radar performance. From among the variety of ways of detecting evaporation duct in practical application, we adopt the regional modified refractivity profile of evaporation duct predicted by the mesoscale numerical weather model MM5 as the prior information, and propose a posterior probability estimation model of the regional range-dependent evaporation duct on the basis of the radar sea clutter power. First, in this model we use the principal component analysis method to model the range-dependent property of evaporation duct, and on this basis, establish the inversion procedure of the range-dependent evaporation duct by using the radar sea clutter. Then, we obtain the relationship among prior probability distribution, posterior probability distribution, and likelihood function of the parameters of the modified refractivity profile by using the Bayesian theory, and finally realize the maximum posterior probability estimation of the evaporation duct parameters. By estimating the real regional range-dependent evaporation duct over East China Sea, it is indicated that the proposed model can perform the inversion of regional range-dependent evaporation duct with a higher precision.
-
Keywords:
- radar sea clutter /
- evaporation duct /
- range-dependent /
- inversion method
[1] Reilly J P, Dockery G D 1990 IEE Proc. -Radar Signal Process 137 80
[2] Zhao X F, Huang S X 2013 Acta Phys. Sin. 62 099204 (in Chinese) [赵小峰, 黄思训 2013 物理学报 62 099204]
[3] Feng J, Liao C, Zhang Q H, Sheng N, Zhou H J 2014 Acta Phys. Sin. 63 134101 (in Chinese) [冯菊, 廖成, 张青洪, 盛楠, 周海京 2014 物理学报 63 134101]
[4] Yardim C 2007 Ph. D. Dissertation (San Diego: University of California)
[5] Goldhirsh J, Dockery G D 1998 Radio Sci. 33 239
[6] Liu A G, Cha H, Liu F 2007 Chin. J. Radio Sci. 22 867 (in Chinese) [刘爱国, 察豪, 刘峰 2007 电波科学学报 22 867]
[7] Douvenot R, Fabbro V, Gerstoft P, Bourlier C, Saillard J 2010 Radio Sci. 45 RS1007
[8] Karimian A, Yardim C, Gerstoft P, Hodgkiss W S, Barrios A E 2011 Radio Sci. 46 RS6013
[9] Karimian A, Yardim C, Hodgkiss W S, Gerstoft P, Barrios A E 2012 Radio Sci. 47 RS0M07
[10] Rogers L T, Hattan C P, Stapleton J K 2000 Radio Sci. 35 955
[11] Gerstoft P, Rogers L T, Krolik J L, Hodgkiss W S 2003 Radio Sci. 38 8053
[12] Yardim C, Gerstoft P, Hodgkiss W S 2006 IEEE Trans. Antennas Propag. 54 1318
[13] Sheng Z, Huang S X 2010 Acta Phys. Sin. 59 1734 (in Chinese) [盛峥, 黄思训 2010 物理学报 59 1734]
[14] Zhao X F, Huang S X 2014 J. Atmos. Oceanic Technol. 31 1250
[15] Zhao X F, Huang S X 2011 Chin. Phys. B 20 029201
[16] Zhao X F, Huang S X, Xiang J 2011 Chin. Phys. B 20 099201
[17] Jiao L, Zhang Y G 2009 Acta Meteorol. Sin. 67 382 (in Chinese) [焦林, 张永刚 2009 气象学报 67 382]
[18] Chen L, Gao S H, Kang S F, Wu Z M 2011 Periodical of Ocean University of China 41 1 (in Chinese) [陈莉, 高山红, 康士峰, 吴增茂 2011 中国海洋大学学报 41 1]
[19] Paulus R A 1990 IEEE Trans. Antennas Propag. 38 1765
[20] Miller F P, Vandome A F, McBrewster J 2010 Karhunen-Loeve Theorem (Beau Bassin: Alphascript Publishing)
[21] Levy M F 2000 Parabolic Equation Methods for Electromagnetic Wave Propagation (London: The Institution of Electrical Engineers)
[22] Zhang J P, Wu Z S, Wang B 2011 Chin. Phys. Lett. 28 034301
[23] Sheng Z 2013 Chin. Phys. B 22 029302
-
[1] Reilly J P, Dockery G D 1990 IEE Proc. -Radar Signal Process 137 80
[2] Zhao X F, Huang S X 2013 Acta Phys. Sin. 62 099204 (in Chinese) [赵小峰, 黄思训 2013 物理学报 62 099204]
[3] Feng J, Liao C, Zhang Q H, Sheng N, Zhou H J 2014 Acta Phys. Sin. 63 134101 (in Chinese) [冯菊, 廖成, 张青洪, 盛楠, 周海京 2014 物理学报 63 134101]
[4] Yardim C 2007 Ph. D. Dissertation (San Diego: University of California)
[5] Goldhirsh J, Dockery G D 1998 Radio Sci. 33 239
[6] Liu A G, Cha H, Liu F 2007 Chin. J. Radio Sci. 22 867 (in Chinese) [刘爱国, 察豪, 刘峰 2007 电波科学学报 22 867]
[7] Douvenot R, Fabbro V, Gerstoft P, Bourlier C, Saillard J 2010 Radio Sci. 45 RS1007
[8] Karimian A, Yardim C, Gerstoft P, Hodgkiss W S, Barrios A E 2011 Radio Sci. 46 RS6013
[9] Karimian A, Yardim C, Hodgkiss W S, Gerstoft P, Barrios A E 2012 Radio Sci. 47 RS0M07
[10] Rogers L T, Hattan C P, Stapleton J K 2000 Radio Sci. 35 955
[11] Gerstoft P, Rogers L T, Krolik J L, Hodgkiss W S 2003 Radio Sci. 38 8053
[12] Yardim C, Gerstoft P, Hodgkiss W S 2006 IEEE Trans. Antennas Propag. 54 1318
[13] Sheng Z, Huang S X 2010 Acta Phys. Sin. 59 1734 (in Chinese) [盛峥, 黄思训 2010 物理学报 59 1734]
[14] Zhao X F, Huang S X 2014 J. Atmos. Oceanic Technol. 31 1250
[15] Zhao X F, Huang S X 2011 Chin. Phys. B 20 029201
[16] Zhao X F, Huang S X, Xiang J 2011 Chin. Phys. B 20 099201
[17] Jiao L, Zhang Y G 2009 Acta Meteorol. Sin. 67 382 (in Chinese) [焦林, 张永刚 2009 气象学报 67 382]
[18] Chen L, Gao S H, Kang S F, Wu Z M 2011 Periodical of Ocean University of China 41 1 (in Chinese) [陈莉, 高山红, 康士峰, 吴增茂 2011 中国海洋大学学报 41 1]
[19] Paulus R A 1990 IEEE Trans. Antennas Propag. 38 1765
[20] Miller F P, Vandome A F, McBrewster J 2010 Karhunen-Loeve Theorem (Beau Bassin: Alphascript Publishing)
[21] Levy M F 2000 Parabolic Equation Methods for Electromagnetic Wave Propagation (London: The Institution of Electrical Engineers)
[22] Zhang J P, Wu Z S, Wang B 2011 Chin. Phys. Lett. 28 034301
[23] Sheng Z 2013 Chin. Phys. B 22 029302
Catalog
Metrics
- Abstract views: 6364
- PDF Downloads: 560
- Cited By: 0