Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Asymmetric giant magnetoimpedance of Co-rich melt-extraction microwires

Zhang Shu-Ling Chen Wei-Ye Zhang Yong

Citation:

Asymmetric giant magnetoimpedance of Co-rich melt-extraction microwires

Zhang Shu-Ling, Chen Wei-Ye, Zhang Yong
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The giant magnetoimpedance(GMI) effect of Co-rich microwires makes an opportunity to design sensitive GMI weak magnetic meter sensor. Optimization of magnetic meters needs to improve the GMI response, especially the field sensitivity of microwires. In this study, Co-rich amorphous microwires each with an average diameter of 32 μm are prepared by melt-extracted technique and their GMI characteristics are investigated at frequencies ranging from 0.1 to 10 MHz with and without bias direct voltage applied. Experimental results indicate that the GMI effect of these wires has asymmetric features with the increases of frequency and driving current. It is found that the intrinsic asymmetric GMI (AGMI) response results from the helical anisotropy and magnetization hysteresis of the Co-rich microwires. Furthermore, it is found that there is a pronounced improvement in AGMI response when a bias voltage is applied. In theory, the factor which induces an increase in circular magnetic field causes successive changes in magnetization reversal of the quickly quenched Co-rich microwires with multiple domains and helical anisotropy. As a consequence, the circular magnetization process is enhanced, leading to higher circular permeability and stronger GMI response. Meanwhile, a bias voltage inducing the given circular magnetic field reinforces the magnetization process in a certain direction, which intensifies the asymmetric characteristic of GMI response. For example, the asymmetric ratio between two impedance peaks rises from 1.46% to 12.06% at 1MHz and 3 mA after applying a 1 V bias voltage. Simultaneously, the circular field inclines the magnetization off the axial direction which makes the axially induced magnetization reversal more difficult and occur at a higher switching field. This effect broadens the linear impedance zone; however, it reduces the slope of the impedance with the external field and the field sensitivity increasing to some extent. The balance between these two sides proves that AGMI response is related to the magnetization reversal process which is sensitive to the circular magnetic field. Experimental results indicate that the field sensitivity rises from 616 to 5687 V/T with the impedance linear zone broadening from 0.65 to 1.16 when a 1 V bias voltage is applied, while it decreases to 4525 V/T when the bias voltage futher increases to 2 V at 10 MHz and 5 mA. This reveals that the GMI effect of these amorphous Co-rich microwires with high field sensitivity can be optimized by applying proper bias voltage.
    • Funds: Project supported by the Natural Science Foundation of Shanxi, China (Grant No. 2014021018-4), the State Key Laboratory of Advanced Metals and Materials, China (Grant No. 2013-Z06), the Natural Science Funds, Ningxia University, China (Grant No. ZR1411), and the Research Starting Funds for Imported Talents, Ningxia University, China(Grant No. BQD2014019).
    [1]

    Mohri K, Kohzawa T, Kawashima K, Yoshida H, Panina L V 1992 IEEE Trans. Magn. 28 3150

    [2]

    Zhukov A, Ipatov M, Churyukanova M, Kaloshkin S, Zhukova V 2014 J. Alloys Compd. 586 5279

    [3]

    Melo L G C, Menard D, Yelon A, Ding L, Saez S, Dolabdjian C 2008 J. Appl. Phys. 103 033903

    [4]

    Han B, Zhang T, Zhang K, Yao B, Yue X L, Huang D Y, Ren H, Tang X Y 2008 IEEE Trans. Magn. 44 605

    [5]

    Antonov A S, Buznikov N A, Granovsky A B 2014 Tech. Phys. Lett. 40 267

    [6]

    Victor Manuel G C, Hector G M 2015 J. Magn. Magn. Mater. 378 485

    [7]

    Gomez-Polo C, Vazquez M 1993 J. Appl. Phys. 62 108

    [8]

    Fang Y Z, Xu Q M, Zheng J J, Wu F M, Ye H Q, Si J X, Zheng J L, Fan X Z,Yang X H 2012 Chin. Phys. B 21 037501

    [9]

    Zhang Y, Dong J, Feng E X, Luo C Q, Liu Q F, Wang J B 2013 Chin. Phys. Lett. 30 037501

    [10]

    Wang W J, Yuan H M, Li J, Ji C J, Dai Y Y, Xiao S Q 2013 Sci. Chin: Phys. Mech. Astron. 43 852 (in Chinese) [王文静,袁慧敏,李娟,姬长建,代由勇,萧淑琴 2013中国科学: 物理学 力学 天文学 43 852]

    [11]

    Panina L V 2002 J. Magn. Magn. Mater. 249 278

    [12]

    Usov N A, Gudoshnikov S A 2013 J. Appl. Phys. 113 243902

    [13]

    Chizhik A, Stupakiewicz A, Zhukov A, Maziewski A, Gonzalez J 2014 Physica B 435 125

    [14]

    Chizhik A, Garcia C, Zhukov A, Gonzalez J, Dominguez L, Blanco J M 2006 Physica B 384 5

    [15]

    Gawronski P, Chizhik A, Blanco J M, Gonzalez J E 2010 IEEE Trans. Magn. 46 365

    [16]

    Ipatov M, Zhukova V, Gonzalez J, Zhukov A 2012 J. Magn. Magn. Mater. 324 4078

    [17]

    Zhukov A, Talaat A, Ipatov M, Blanco J M, Zhukova V 2014 J. Alloys Compd. 615 610

    [18]

    Duque J G S, Araujo A E P D, Knobel M 2006 J. Magn. Magn. Mater. 299 419

    [19]

    Taysioglu A A, Peksoz A, Derebasi N 2013 Sens. Lett. 11 119

    [20]

    Dufay B, Saez S, Dolabdjian C, Yelon A, Menard D 2012 J. Magn. Magn. Mater. 324 2091

  • [1]

    Mohri K, Kohzawa T, Kawashima K, Yoshida H, Panina L V 1992 IEEE Trans. Magn. 28 3150

    [2]

    Zhukov A, Ipatov M, Churyukanova M, Kaloshkin S, Zhukova V 2014 J. Alloys Compd. 586 5279

    [3]

    Melo L G C, Menard D, Yelon A, Ding L, Saez S, Dolabdjian C 2008 J. Appl. Phys. 103 033903

    [4]

    Han B, Zhang T, Zhang K, Yao B, Yue X L, Huang D Y, Ren H, Tang X Y 2008 IEEE Trans. Magn. 44 605

    [5]

    Antonov A S, Buznikov N A, Granovsky A B 2014 Tech. Phys. Lett. 40 267

    [6]

    Victor Manuel G C, Hector G M 2015 J. Magn. Magn. Mater. 378 485

    [7]

    Gomez-Polo C, Vazquez M 1993 J. Appl. Phys. 62 108

    [8]

    Fang Y Z, Xu Q M, Zheng J J, Wu F M, Ye H Q, Si J X, Zheng J L, Fan X Z,Yang X H 2012 Chin. Phys. B 21 037501

    [9]

    Zhang Y, Dong J, Feng E X, Luo C Q, Liu Q F, Wang J B 2013 Chin. Phys. Lett. 30 037501

    [10]

    Wang W J, Yuan H M, Li J, Ji C J, Dai Y Y, Xiao S Q 2013 Sci. Chin: Phys. Mech. Astron. 43 852 (in Chinese) [王文静,袁慧敏,李娟,姬长建,代由勇,萧淑琴 2013中国科学: 物理学 力学 天文学 43 852]

    [11]

    Panina L V 2002 J. Magn. Magn. Mater. 249 278

    [12]

    Usov N A, Gudoshnikov S A 2013 J. Appl. Phys. 113 243902

    [13]

    Chizhik A, Stupakiewicz A, Zhukov A, Maziewski A, Gonzalez J 2014 Physica B 435 125

    [14]

    Chizhik A, Garcia C, Zhukov A, Gonzalez J, Dominguez L, Blanco J M 2006 Physica B 384 5

    [15]

    Gawronski P, Chizhik A, Blanco J M, Gonzalez J E 2010 IEEE Trans. Magn. 46 365

    [16]

    Ipatov M, Zhukova V, Gonzalez J, Zhukov A 2012 J. Magn. Magn. Mater. 324 4078

    [17]

    Zhukov A, Talaat A, Ipatov M, Blanco J M, Zhukova V 2014 J. Alloys Compd. 615 610

    [18]

    Duque J G S, Araujo A E P D, Knobel M 2006 J. Magn. Magn. Mater. 299 419

    [19]

    Taysioglu A A, Peksoz A, Derebasi N 2013 Sens. Lett. 11 119

    [20]

    Dufay B, Saez S, Dolabdjian C, Yelon A, Menard D 2012 J. Magn. Magn. Mater. 324 2091

  • [1] Deng Shan-shan, Song Ping, Liu Xiao-he, Yao Sen, Zhao Qian-yi. The magnetic susceptibility of Mn3Sn single crystal is enhanced under GPa-level uniaxial stress. Acta Physica Sinica, 2024, 0(0): . doi: 10.7498/aps.73.20240287
Metrics
  • Abstract views:  4987
  • PDF Downloads:  154
  • Cited By: 0
Publishing process
  • Received Date:  01 March 2015
  • Accepted Date:  16 April 2015
  • Published Online:  05 August 2015

/

返回文章
返回