Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Study of ferroelectric switching and fatigue behaviors in poly(vinylidene fluoride-trifluoroethylene) copolymer nano-films

Du Xiao-Li Zhang Xiu-Li Liu Hong-Bo Ji Xin

Citation:

Study of ferroelectric switching and fatigue behaviors in poly(vinylidene fluoride-trifluoroethylene) copolymer nano-films

Du Xiao-Li, Zhang Xiu-Li, Liu Hong-Bo, Ji Xin
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The nano-films of poly (vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)) copolymer, with mole ratio of VDFTrFE 70/30, are deposited on titanium-metallized silicon wafer by spin coating technique. Annealing temperature and humidity dependence of polarization switching and fatigue babivors in ferroelectric P(VDF-TrFE) copolymer thin film capacitors have been investigated. Firstly, the effect of different annealing temperature on polarization behavior is revealed. It is found that the polarization of the film is improved by increasing annealing temperatures. When the annealing temperature is higher than 100℃, with increasing switching cycles, the ferroelectric polarization characteristics exhibit a trend of increasing firstly and then decreasing, a top value appears at the number of cycles near 104. A more appropriate heat treatment temperature is 130℃. Further analyses on the crystalline structures with X-ray diffraction show that the degree of crystallinity of the films is strongly dependent on the annealing temperature. It can be seen that the diffraction peak of the ferroelectric phase ( phase) becomes very strong and sharp with increasing annealing temperatre. It is demonstrated that the effect of annealing temperature on ferroelectric properties could be explained by the changes of the degree of crystallinity in these films from the results of X-ray and the polarization behaviors. Meanwhile, the microstructure of the 140 nm film annealed at 130℃ is obtained by using scanning electron microscope, which shows that the film exhibits a worm-like, dense, well-crystallized microstructure. Secondly, for the capacitor P(VDF-TrFE) films with a thickness of 140 nm, the ferroelectric polarization hysteresis loops as functions of electric field for the films at different relative humidities are achieved. It is obvious that the polarization properties depend on the relative humidity during the film preparation process, the polarizaiton fatigue can be further enhanced through a higher relative humidity during the sample preparation. In addition, one of the most important features for ferroelectric material to be used as an alternative FeRAM is the low leakage current density. Therefore, the descriptions of the leakage current density versus different relative humidities are given. It is observed that the voltage behavior of the leakage current has a minor dependence on relative humidity. In a word, these results illustrate that the polarization properties are strongly dependent not only on the annealing temperature, but also the relative humidity in a process for the preparation of the nano-films. Furthermore, according to a re-annealing treatment to improve the crystalline degree of the ferroelectric phase, the influence of the re-annealing process on the fatigue properties of the films is also studied. The polarization fatigue can be improved obviously by a re-annealing process, and the possible origins have been discussed. To further understand the variation of crystallization properties of the samples before and after re-annealing, the crystallinity of the film are studied by the technique of Fourier transform infrared spectroscopy. It is indicated that the crystallinity of the films can partly be recovered through re-annealing treatment. These results are very helpful and provide an available way to improve the ferroelectric polarization and fatigue properties of the ferroelectric nano-films.
    • Funds: Project supported by Natural Science Foundation of Shanghai, China (Grant No. 13ZR1418200) and the Innovation Program of Shanghai Municipal Education Commission, China (Grant No. 15ZZ093).
    [1]

    Chen J Y, Yun Q, Gao W, Bai Y L, Nie C H, Zhao S F 2014 Mater. Lett. 136 11

    [2]

    Rodrigues S, Silva J, Khodorov A, Martín-Sánchez J, Pereira M, Gomes M 2013 Mater. Sci. Engineer. B 178 1224

    [3]

    Zhou Y C, Tang M H 2009 Mater. Rev. 23 1 (in Chinese) [周益春, 唐明华 2009 材料导报 23 1]

    [4]

    Zheng X J, Wu Q Y, Peng J F, He L, Feng X, Chen Y Q, Zhang D Z 2010 J. Mater. Sci. 45 3001

    [5]

    Sharma D K, Khosla R, Sharma S K

    [6]

    Zhang Y F, Wang C L, Zhao M L, Li J C, Zhang R Z 2009 Chin. Phys. B 18 1666

    [7]

    Lazareva I, Koval Y, Müller P, Müller K, Henkel K, Schmeisser D 2009 J. Appl. Phys. 105 054110

    [8]

    Lew C, Thompson M O

    [9]

    Ishiwara H 2012 Curr. Appl. Phys. 12 603

    [10]

    Sangran K D, Binod K R 2015 Chin. Phys. B 24 067702

    [11]

    Kim J W, Raghavan C M, Kim S S 2015 Ceramics International 41 1567

    [12]

    Lin P T, Li X, Zhang L, Yin J H, Cheng X W, Wang Z H, Wu Y C, Wu G H 2014 Chin. Phys. B 23 047701

    [13]

    Fang Y J, Gong G S, Gebru Z, Yuan S L 2014 Chin. Phys. B 23 128701

    [14]

    Lin Z B, Cai W, Jiang W H, Fu C L, Li C, Song Y X 2013 Ceramics International 39 8729

    [15]

    Zhu G D, Luo X Y, Zhang J H, Yan X J 2009 J. Appl. Phys. 106 074113

    [16]

    Luo X Y, Zhang J H, Yan X J, Zhu G D 2010 Chin. Phys. B 19 107702

    [17]

    Lü Z Y, Pu T S, Huang Y P, Meng X J, Xu H S 2015 Nanotechnology 26 055202

    [18]

    Wang J L, Liu B L, Zhao X L, Tian B B, Zou Y H, Sun S, Shen H, Sun J L, Meng X J, Chu J H 2014 Appl. Phys. Lett. 104 182907

    [19]

    Zhang X L, Du X L, Liu C L, Ji X, Xu H S 2015 Appl. Phys. Lett. 106 022906

    [20]

    Zhang X L, Du X L, Hou Y, Lü Z Y, Xu H S 2014 Appl. Phys. Lett. 104 103505

    [21]

    Scott J F, de Araujop C A P 1989 Science 246 1400

    [22]

    Yamada T, Kitayama T 1981 J. Appl. Phys. 52 6859

    [23]

    Koga K, Ohigashi H 1986 J. Appl. Phys. 59 2142

    [24]

    Xu H S, Fang X R, Liu X B, Wu S, Gu Y J, Meng X J, Sun J L, Chu J H

    [25]

    Naber R C G, Blom P W M, Marsman A W, Leeuw D M 2004 Appl. Phys. Lett. 85 2032

    [26]

    Naber R C G, Boer B D, Blom P W M, Leeuw D M D 2005 Appl. Phys. Lett. 87 203509

    [27]

    Mao D, Mejia I, Stiegler H, Gnade B E, Quevedo-Lopez M A 2010 J. Appl. Phys. 108 094102

    [28]

    Zhu G D, Zeng Z G, Zhang L, Yan X J 2006 Appl. Phys. Lett. 89 102905

    [29]

    Zhu G D, Gu Y, Yu H, Shao S F, Jiang Y L 2011 J. Appl. Phys. 110 024109

    [30]

    Wu Y J, Li X H, Weng Y Y, Hu Z J, Jonas A M 2014 Polymer 55 970

    [31]

    Zhang Q M, Xu H S, Fang X, Cheng Z Y, Xia F, You H 2001 J. Appl. Phys. 89 2631

    [32]

    Guo D, Setter N 2013 Macromolecules 46 1883

    [33]

    Xia F, Xu H S, Fang X, Razavi B, Cheng Z Y, Lu Y, Xu B M, Zhang Q M 2001 Appl. Phys. Lett. 78 1122

    [34]

    Zhu G D, Zeng Z G, Zhang L, Yan X J 2008 J. Appl. Polym. Sci. 107 3945

    [35]

    Zhang X L, Xu H S, Zhang Y N 2011 J. Phys. D: Appl. Phys. 44 155501

    [36]

    Zhang X L, Hou Y, Zhang Y, Lü Z Y, Xu G Q, Xu H S 2012 J. Appl. Phys. 112 074111

    [37]

    Reece T J, Gerber A, Kohlstedt H, Ducharme S 2010 J. Appl. Phys. 108 024109

    [38]

    Xu H S, Liu X B, Fang X R, Wu S, Xie H F, Li G B, Meng X J, Sun J L, Chu J H 2009 J. Appl. Phys. 105 034107

    [39]

    Xu H S, Zhang Y N, Zhang X L, Ma Y P 2011 Ferroelectrics 413 46

    [40]

    Ohigashi H, Barique M A 2001 Polymer 42 4981

    [41]

    Nguyen C A, Lee P S, Mhaisalkar S G 2007 Org. Electron. 8 415

    [42]

    Hu W J, Juo D M, You L, Wang J L, Chen Y C, Chu Y H, Wu T 2014 Scientific Reports 4 4772

    [43]

    Wang H 2004 Acta Phys. Sin. 53 1265 (in Chinese) [王华 2004 物理学报 53 1265]

    [44]

    Wen J H, Yang Q, Cao J X, Zhou Y C 2013 Acta Phys. Sin. 62 067701 (in Chinese) [文娟辉, 杨琼, 曹觉先, 周益春 2013 物理学报 62 067701]

    [45]

    Zhu G D, Xu J, Yan X J, Li J, Zeng Z G, Shen M, Zhang L 2006 Comput. Mater. Sci. 37 512

    [46]

    Guy I L, Limbong A, Zheng Z, Das-Gupta D K 2000 IEEE Transactions on Dielectrics and Electrical Insulation 7 489

    [47]

    Benz M, Euler W B, Gregory O J 2002 Macromolecules 35 2682

  • [1]

    Chen J Y, Yun Q, Gao W, Bai Y L, Nie C H, Zhao S F 2014 Mater. Lett. 136 11

    [2]

    Rodrigues S, Silva J, Khodorov A, Martín-Sánchez J, Pereira M, Gomes M 2013 Mater. Sci. Engineer. B 178 1224

    [3]

    Zhou Y C, Tang M H 2009 Mater. Rev. 23 1 (in Chinese) [周益春, 唐明华 2009 材料导报 23 1]

    [4]

    Zheng X J, Wu Q Y, Peng J F, He L, Feng X, Chen Y Q, Zhang D Z 2010 J. Mater. Sci. 45 3001

    [5]

    Sharma D K, Khosla R, Sharma S K

    [6]

    Zhang Y F, Wang C L, Zhao M L, Li J C, Zhang R Z 2009 Chin. Phys. B 18 1666

    [7]

    Lazareva I, Koval Y, Müller P, Müller K, Henkel K, Schmeisser D 2009 J. Appl. Phys. 105 054110

    [8]

    Lew C, Thompson M O

    [9]

    Ishiwara H 2012 Curr. Appl. Phys. 12 603

    [10]

    Sangran K D, Binod K R 2015 Chin. Phys. B 24 067702

    [11]

    Kim J W, Raghavan C M, Kim S S 2015 Ceramics International 41 1567

    [12]

    Lin P T, Li X, Zhang L, Yin J H, Cheng X W, Wang Z H, Wu Y C, Wu G H 2014 Chin. Phys. B 23 047701

    [13]

    Fang Y J, Gong G S, Gebru Z, Yuan S L 2014 Chin. Phys. B 23 128701

    [14]

    Lin Z B, Cai W, Jiang W H, Fu C L, Li C, Song Y X 2013 Ceramics International 39 8729

    [15]

    Zhu G D, Luo X Y, Zhang J H, Yan X J 2009 J. Appl. Phys. 106 074113

    [16]

    Luo X Y, Zhang J H, Yan X J, Zhu G D 2010 Chin. Phys. B 19 107702

    [17]

    Lü Z Y, Pu T S, Huang Y P, Meng X J, Xu H S 2015 Nanotechnology 26 055202

    [18]

    Wang J L, Liu B L, Zhao X L, Tian B B, Zou Y H, Sun S, Shen H, Sun J L, Meng X J, Chu J H 2014 Appl. Phys. Lett. 104 182907

    [19]

    Zhang X L, Du X L, Liu C L, Ji X, Xu H S 2015 Appl. Phys. Lett. 106 022906

    [20]

    Zhang X L, Du X L, Hou Y, Lü Z Y, Xu H S 2014 Appl. Phys. Lett. 104 103505

    [21]

    Scott J F, de Araujop C A P 1989 Science 246 1400

    [22]

    Yamada T, Kitayama T 1981 J. Appl. Phys. 52 6859

    [23]

    Koga K, Ohigashi H 1986 J. Appl. Phys. 59 2142

    [24]

    Xu H S, Fang X R, Liu X B, Wu S, Gu Y J, Meng X J, Sun J L, Chu J H

    [25]

    Naber R C G, Blom P W M, Marsman A W, Leeuw D M 2004 Appl. Phys. Lett. 85 2032

    [26]

    Naber R C G, Boer B D, Blom P W M, Leeuw D M D 2005 Appl. Phys. Lett. 87 203509

    [27]

    Mao D, Mejia I, Stiegler H, Gnade B E, Quevedo-Lopez M A 2010 J. Appl. Phys. 108 094102

    [28]

    Zhu G D, Zeng Z G, Zhang L, Yan X J 2006 Appl. Phys. Lett. 89 102905

    [29]

    Zhu G D, Gu Y, Yu H, Shao S F, Jiang Y L 2011 J. Appl. Phys. 110 024109

    [30]

    Wu Y J, Li X H, Weng Y Y, Hu Z J, Jonas A M 2014 Polymer 55 970

    [31]

    Zhang Q M, Xu H S, Fang X, Cheng Z Y, Xia F, You H 2001 J. Appl. Phys. 89 2631

    [32]

    Guo D, Setter N 2013 Macromolecules 46 1883

    [33]

    Xia F, Xu H S, Fang X, Razavi B, Cheng Z Y, Lu Y, Xu B M, Zhang Q M 2001 Appl. Phys. Lett. 78 1122

    [34]

    Zhu G D, Zeng Z G, Zhang L, Yan X J 2008 J. Appl. Polym. Sci. 107 3945

    [35]

    Zhang X L, Xu H S, Zhang Y N 2011 J. Phys. D: Appl. Phys. 44 155501

    [36]

    Zhang X L, Hou Y, Zhang Y, Lü Z Y, Xu G Q, Xu H S 2012 J. Appl. Phys. 112 074111

    [37]

    Reece T J, Gerber A, Kohlstedt H, Ducharme S 2010 J. Appl. Phys. 108 024109

    [38]

    Xu H S, Liu X B, Fang X R, Wu S, Xie H F, Li G B, Meng X J, Sun J L, Chu J H 2009 J. Appl. Phys. 105 034107

    [39]

    Xu H S, Zhang Y N, Zhang X L, Ma Y P 2011 Ferroelectrics 413 46

    [40]

    Ohigashi H, Barique M A 2001 Polymer 42 4981

    [41]

    Nguyen C A, Lee P S, Mhaisalkar S G 2007 Org. Electron. 8 415

    [42]

    Hu W J, Juo D M, You L, Wang J L, Chen Y C, Chu Y H, Wu T 2014 Scientific Reports 4 4772

    [43]

    Wang H 2004 Acta Phys. Sin. 53 1265 (in Chinese) [王华 2004 物理学报 53 1265]

    [44]

    Wen J H, Yang Q, Cao J X, Zhou Y C 2013 Acta Phys. Sin. 62 067701 (in Chinese) [文娟辉, 杨琼, 曹觉先, 周益春 2013 物理学报 62 067701]

    [45]

    Zhu G D, Xu J, Yan X J, Li J, Zeng Z G, Shen M, Zhang L 2006 Comput. Mater. Sci. 37 512

    [46]

    Guy I L, Limbong A, Zheng Z, Das-Gupta D K 2000 IEEE Transactions on Dielectrics and Electrical Insulation 7 489

    [47]

    Benz M, Euler W B, Gregory O J 2002 Macromolecules 35 2682

  • [1] Wang Yi, Yang Chen, Guo Xiang, Wang Ji-Hong, Liu Xue-Fei, Wei Jie-Ming, Lang Qi-Zhi, Luo Zi-Jiang, Ding Zhao. Thermodynamic analysis of Al0.17Ga0.83As/GaAs (001) in annealing process. Acta Physica Sinica, 2018, 67(8): 080503. doi: 10.7498/aps.67.20172718
    [2] Chen Jian-Hui, Yang Jing, Shen Yan-Jiao, Li Feng, Chen Jing-Wei, Liu Hai-Xu, Xu Ying, Mai Yao-Hua. Investigation of post-annealing enhancement effect of passivation quality of hydrogenated amorphous silicon. Acta Physica Sinica, 2015, 64(19): 198801. doi: 10.7498/aps.64.198801
    [3] Zhang Bin, Wang Wei-Li, Niu Qiao-Li, Zou Xian-Shao, Dong Jun, Zhang Yong. Effects of annealing in H2 atomsphere on optoelectronical properties of Nb-doped TiO2 thin films. Acta Physica Sinica, 2014, 63(6): 068102. doi: 10.7498/aps.63.068102
    [4] Guo Qiao-Neng, Cao Yi-Gang, Sun Qiang, Liu Zhong-Xia, Jia Yu, Huo Yu-Ping. Temperature dependence of fatigue properties of ultrathin copper films: molecular dynamics simulations. Acta Physica Sinica, 2013, 62(10): 107103. doi: 10.7498/aps.62.107103
    [5] Gu Shan-Shan, Hu Xiao-Jun, Huang Kai. Effects of annealing temperature on the microstructure and p-type conduction of B-doped nanocrystalline diamond films. Acta Physica Sinica, 2013, 62(11): 118101. doi: 10.7498/aps.62.118101
    [6] Liu Jian-Peng, Zhu Yan-Xu, Guo Wei-Ling, Yan Wei-Wei, Wu Guo-Qing. The effect of ITO annealing on electrical characteristic of GaN based LED. Acta Physica Sinica, 2012, 61(13): 137303. doi: 10.7498/aps.61.137303
    [7] Hu Mei-Jiao, Li Cheng, Xu Jian-Fang, Lai Hong-Kai, Chen Song-Yan. Formation and properties of GeOI prepared by cyclic thermal oxidation and annealing processes. Acta Physica Sinica, 2011, 60(7): 078102. doi: 10.7498/aps.60.078102
    [8] Luo Qing-Hong, Lou Yan-Zhi, Zhao Zhen-Ye, Yang Hui-Sheng. Effect of annealing on microstructure and mechanical propertiesof AlTiN multilayer coatings. Acta Physica Sinica, 2011, 60(6): 066201. doi: 10.7498/aps.60.066201
    [9] Yang Fan, Ma Jin, Kong Ling-Yi, Luan Cai-Na, Zhu Zhen. Structural, optical and electrical properties of Ga2(1-x)In2xO3 films prepared by metalorganic chemical vapor deposition. Acta Physica Sinica, 2009, 58(10): 7079-7082. doi: 10.7498/aps.58.7079
    [10] Song Chao, Chen Gu-Ran, Xu Jun, Wang Tao, Sun Hong-Cheng, Liu Yu, Li Wei, Chen Kun-Ji. Properties of electric transport in crystallized silicon films under different annealing temperatures. Acta Physica Sinica, 2009, 58(11): 7878-7883. doi: 10.7498/aps.58.7878
    [11] Wang Nan, Kong Chun-Yang, Zhu Ren-Jiang, Qin Guo-Ping, Dai Te-Li, Nan Mao, Ruan Hai-Bo. Preparation and characteristics research of p-type ZnO films. Acta Physica Sinica, 2007, 56(10): 5974-5978. doi: 10.7498/aps.56.5974
    [12] Zhang Xi-Jian, Ma Hong-Lei, Wang Qing-Pu, Ma Jin, Zong Fu-Jian, Xiao Hong-Di, Ji Feng. Effect of annealing on optical properties of MgxZn1-xO thin films deposited at low temperature. Acta Physica Sinica, 2006, 55(1): 437-440. doi: 10.7498/aps.55.437
    [13] Sun Cheng-Wei, Liu Zhi-Wen, Zhang Qing-Yu. Influence of annealing temperature on the microstructure and photoluminescence of ZnO films. Acta Physica Sinica, 2006, 55(1): 430-436. doi: 10.7498/aps.55.430
    [14] Li Huo-Quan, Ning Zhao-Yuan, Cheng Shan-Hua, Jiang Mei-Fu. Photoluminescence centers and shift of ZnO films deposited by rf magnetron sputtering. Acta Physica Sinica, 2004, 53(3): 867-870. doi: 10.7498/aps.53.867
    [15] Zhang De-Heng, Wang Qing-Pu, Xue Zhong-Ying. Ultra violet photoluminescenc of ZnO films on different substrates. Acta Physica Sinica, 2003, 52(6): 1484-1487. doi: 10.7498/aps.52.1484
    [16] Fang Ze-Bo, Gong Heng-Xiang, Liu Xue-Qin, Xu Da-Yin, Huang Chun-Ming, Wang Yin-Yue. Effects of annealing on the structure and photoluminescence of ZnO films. Acta Physica Sinica, 2003, 52(7): 1748-1751. doi: 10.7498/aps.52.1748
    [17] ZHU MING-GANG, LI WEI, DONG SHENG-ZHI, LI XIU-MEI. THE EFFECT ON THE MAGNETIC PROPERTIES OF THE DUAL-PHASE NANOCRYSTALLINE Nd(Fe,Co)B BONDED MAGNETS BY ADDING Ga. Acta Physica Sinica, 2001, 50(8): 1600-1604. doi: 10.7498/aps.50.1600
    [18] GUO DONG, CAI KAI, LI LONG-TU, GUI ZHI-LUN. ELECTRODEPOSITION OF DIAMOND-LIKE CARBON FILMS FROM ORGANIC SOLVENTS AND EFFECTS OF ANNEALING ON THE FILM STRUCTURE. Acta Physica Sinica, 2001, 50(12): 2413-2417. doi: 10.7498/aps.50.2413
    [19] WANG YONG-QIAN, CHEN CHANG-YONG, CHEN WEI-DE, YANG FU-HUA, DIAO HONG-WEI, XU ZHEN-JIA, ZHANG SHI-BIN, KONG GUANG-LIN, LIAO XIAN-BO. THE MICROSTRUCTURE AND ITS HIGH-TEMPERATURE ANNEALING BEHAVIOURS OF a-Si∶O∶H FILM. Acta Physica Sinica, 2001, 50(12): 2418-2422. doi: 10.7498/aps.50.2418
    [20] TONG LIU-NIU, HE XIAN-MEI, LU MU. EFFECT OF ANNEALING ON THE MAGNETIC PROPERTIES OF Ni80Co20 THIN FILMS WITH IMPURITY LAYERS. Acta Physica Sinica, 2000, 49(11): 2290-2295. doi: 10.7498/aps.49.2290
Metrics
  • Abstract views:  6644
  • PDF Downloads:  264
  • Cited By: 0
Publishing process
  • Received Date:  11 May 2015
  • Accepted Date:  03 July 2015
  • Published Online:  05 August 2015

/

返回文章
返回