Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Thermodynamic analysis of Al0.17Ga0.83As/GaAs (001) in annealing process

Wang Yi Yang Chen Guo Xiang Wang Ji-Hong Liu Xue-Fei Wei Jie-Ming Lang Qi-Zhi Luo Zi-Jiang Ding Zhao

Citation:

Thermodynamic analysis of Al0.17Ga0.83As/GaAs (001) in annealing process

Wang Yi, Yang Chen, Guo Xiang, Wang Ji-Hong, Liu Xue-Fei, Wei Jie-Ming, Lang Qi-Zhi, Luo Zi-Jiang, Ding Zhao
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • For matching lattice parameters, AlGaAs alloy is usually grown on a GaAs (001) substrate. The AlGaAs/GaAs multilayer structure has been widely used to manufacture various photoelectric and electronic devices. The practical importance of atomic flat surfaces lies in improving the performances of modern optoelectronic devices based on AlGaAs/GaAs multilayer structure. The influence of temperature on the flatness of the film has not been analyzed in detail, so it is very important to prepare the surface at an atomic level by adjusting annealing temperature. In this paper, 15 ML Al0.17Ga0.83As are deposited on an n-doped GaAs (001) substrate by the molecular beam epitaxy (MBE) technique. We study the effects of various annealing temperatures (520℃, 530℃, 540℃) on the flattening of Al0.17Ga0.83As/GaAs (001) surface under the same condition of arsenic BEP about 1.210-3 Pa, annealing time 60 min and growth rate (0.17 ML/s). The (1000 nm1000 nm) scanning tunneling microscope (STM) images and Fourier transform graphs are obtained to show the evolution of surface morphology. In a temperature range of 520-530℃, island is ripening, the coverage of the island increases, the pit also begins to merge into a larger pit; when the temperature exceeds 530℃, the increasing of ripening rate leads to a big island and the pit turns into terrace, while the coverage of island and the pit gradually decreases. In the annealing process, the area of terrace increases and gradually approaches to 100%. By quantitatively analysing the coverage of pit (island, terrace) and root mean square (RMS) roughness varying with the annealing temperature, a 545℃ (1℃) better annealing temperature is proposed by fitting the curve of RMS roughness variation. At the same time, the film annealing model is analyzed in this paper. Comparing the results in the literature with our experimental data, it is found that the change of annealing temperature can influence the number of active atoms, in which the ratio of annealing atoms contributing to surface flattening () should be proportional to the annealing temperature. According to the experimental results, Al0.17Ga0.83As surface basically presents the flat morphology with 60 min annealing at 540℃ when 0.20 0.25. When the annealing temperature reaches 545℃, we can also speculate that the annealing time is about 55-60 min. This is consistent with our previous conclusion. It should be pointed out that our experiment avoids metallizing the film surface caused by the anti-evaporation of the atoms and the metal gallium atoms climbing on the surface of the film when the annealing temperature is too high. The experimental results are applicable to the Al0.17 Ga0.83As thin film growth and annealing.
      Corresponding author: Ding Zhao, zding@gzu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61564002, 11664005, 61604046) and the Foundation of Guizhou Provincial Science and Technology Department, China (Grant Nos. QKH-J[2014]2046, QKH-LH[2016]7436, QKH-[2017]1055).
    [1]

    Wei W Z, Guo X, Liu K, Wang Y, Luo Z J, Zhou Q, Wang J H, Ding Z 2013 Acta Phys. Sin. 62 226801 (in Chinese)[魏文喆, 郭祥, 刘珂, 王一, 罗子江, 周清, 王继红, 丁召 2013 物理学报 62 226801]

    [2]

    Walid F, Nouredine S, Slimane O, Riaz H M, Dler J, Noor A S, Mohsin A, David T, Mohamed H 2017 Superlattices Microst. 111 1010

    [3]

    Maciej A K, Anna S, Kamil K, Marcin M, Karolina P, Rafał J, Renata K, Marek G, Adam B 2018 Mat. Sci. Semicon. Proc. 74 88

    [4]

    Johnson M B, Pfister M, Alvarado S F, Salemink H W M 1995 Microelectron. Eng. 27 31

    [5]

    Stumpf R, Feibelman P J 1996 Phys. Rev. B 54 5145

    [6]

    Makoto K, Naoki K 1997 J. Cryst. Growth 174 513

    [7]

    Pfeiffer L, Schubert E F, West K W 1991 Appl. Phys. Lett. 58 2258

    [8]

    Xue Q K, Hashizume T, Sakurai T 1997 Prog. Surf. Sci. 56 1

    [9]

    Madras G, McCoy B J 2003 J. Chem. Phys. 119 1683

    [10]

    Fan Y, Karpov I, Bratina G, Sorba L, Gladfelter W 1996 J. Vac. Sci. Technol. B 14 623

    [11]

    Mao G M, Wang Q, Chai Z, Cao J W, Liu H, Ren X M, Maleev N A, Vasil'ev A P, Zhukov A E, Ustinov V M 2018 Mat. Sci. Semicon. Proc. 79 20

    [12]

    Sadia I S, Ali N B 2017 Data in Brief 14 618

    [13]

    Mahmoud D, Amel R, Radhouane C, Faouzi H 2017 J. Alloy. Compd. 728 1165

    [14]

    Amini M, Soleimani M, Ehsani M H 2017 Superlattices Microst. 112 680

    [15]

    Kim J H, Lee H J 2014 Mater. Lett. 123 1

    [16]

    Akhundov I O, Abblperovich V L, Latyshev A V, Terekhov A S 2013 Appl. Surf. Sci. 269 2

    [17]

    Kazantsev D M, Akhundov I O, Karpov A N, Shwartz N L, Alperovich V L, Terekhov A S 2015 Appl. Surf. Sci. 333 141

    [18]

    Wei W Z, Wang Y, Xiang G, Luo Z J, Zhen Z, Zhou H Y, Ding Z 2015 Appl. Surf. Sci. 345 400

    [19]

    Liu K, Guo X, Zhou Q, Zhang B C, Luo Z J, Ding Z 2014 Chin. Phys. B 23 046806

    [20]

    Liu K, Zhou Q, Zhou X, Guo X, Luo Z J, Wang J H, Ding Z 2013 Chin. Phys. B 22 026801

    [21]

    Zhou H Y, Zhao Z, Guo X, Wei W Z, Wang Y, Luo Z J, Liu J, Wang J H, Zhou X, Ding Z 2016 Chin. J. Vac. Sci. Technol. 36 477 (in Chinese)[周海月, 赵振, 郭祥, 魏文喆, 王一, 罗子江, 刘健, 王继红, 周勋, 丁召 2016 真空科学与技术学报 36 477]

    [22]

    Alperovich V L, Akhundov I O, Rudaya N S, Sheglov D V, Rodyakina E E, Latyshev A V 2009 Appl. Phys. Lett. 94 101908

  • [1]

    Wei W Z, Guo X, Liu K, Wang Y, Luo Z J, Zhou Q, Wang J H, Ding Z 2013 Acta Phys. Sin. 62 226801 (in Chinese)[魏文喆, 郭祥, 刘珂, 王一, 罗子江, 周清, 王继红, 丁召 2013 物理学报 62 226801]

    [2]

    Walid F, Nouredine S, Slimane O, Riaz H M, Dler J, Noor A S, Mohsin A, David T, Mohamed H 2017 Superlattices Microst. 111 1010

    [3]

    Maciej A K, Anna S, Kamil K, Marcin M, Karolina P, Rafał J, Renata K, Marek G, Adam B 2018 Mat. Sci. Semicon. Proc. 74 88

    [4]

    Johnson M B, Pfister M, Alvarado S F, Salemink H W M 1995 Microelectron. Eng. 27 31

    [5]

    Stumpf R, Feibelman P J 1996 Phys. Rev. B 54 5145

    [6]

    Makoto K, Naoki K 1997 J. Cryst. Growth 174 513

    [7]

    Pfeiffer L, Schubert E F, West K W 1991 Appl. Phys. Lett. 58 2258

    [8]

    Xue Q K, Hashizume T, Sakurai T 1997 Prog. Surf. Sci. 56 1

    [9]

    Madras G, McCoy B J 2003 J. Chem. Phys. 119 1683

    [10]

    Fan Y, Karpov I, Bratina G, Sorba L, Gladfelter W 1996 J. Vac. Sci. Technol. B 14 623

    [11]

    Mao G M, Wang Q, Chai Z, Cao J W, Liu H, Ren X M, Maleev N A, Vasil'ev A P, Zhukov A E, Ustinov V M 2018 Mat. Sci. Semicon. Proc. 79 20

    [12]

    Sadia I S, Ali N B 2017 Data in Brief 14 618

    [13]

    Mahmoud D, Amel R, Radhouane C, Faouzi H 2017 J. Alloy. Compd. 728 1165

    [14]

    Amini M, Soleimani M, Ehsani M H 2017 Superlattices Microst. 112 680

    [15]

    Kim J H, Lee H J 2014 Mater. Lett. 123 1

    [16]

    Akhundov I O, Abblperovich V L, Latyshev A V, Terekhov A S 2013 Appl. Surf. Sci. 269 2

    [17]

    Kazantsev D M, Akhundov I O, Karpov A N, Shwartz N L, Alperovich V L, Terekhov A S 2015 Appl. Surf. Sci. 333 141

    [18]

    Wei W Z, Wang Y, Xiang G, Luo Z J, Zhen Z, Zhou H Y, Ding Z 2015 Appl. Surf. Sci. 345 400

    [19]

    Liu K, Guo X, Zhou Q, Zhang B C, Luo Z J, Ding Z 2014 Chin. Phys. B 23 046806

    [20]

    Liu K, Zhou Q, Zhou X, Guo X, Luo Z J, Wang J H, Ding Z 2013 Chin. Phys. B 22 026801

    [21]

    Zhou H Y, Zhao Z, Guo X, Wei W Z, Wang Y, Luo Z J, Liu J, Wang J H, Zhou X, Ding Z 2016 Chin. J. Vac. Sci. Technol. 36 477 (in Chinese)[周海月, 赵振, 郭祥, 魏文喆, 王一, 罗子江, 刘健, 王继红, 周勋, 丁召 2016 真空科学与技术学报 36 477]

    [22]

    Alperovich V L, Akhundov I O, Rudaya N S, Sheglov D V, Rodyakina E E, Latyshev A V 2009 Appl. Phys. Lett. 94 101908

  • [1] Chen Jian-Hui, Yang Jing, Shen Yan-Jiao, Li Feng, Chen Jing-Wei, Liu Hai-Xu, Xu Ying, Mai Yao-Hua. Investigation of post-annealing enhancement effect of passivation quality of hydrogenated amorphous silicon. Acta Physica Sinica, 2015, 64(19): 198801. doi: 10.7498/aps.64.198801
    [2] Du Xiao-Li, Zhang Xiu-Li, Liu Hong-Bo, Ji Xin. Study of ferroelectric switching and fatigue behaviors in poly(vinylidene fluoride-trifluoroethylene) copolymer nano-films. Acta Physica Sinica, 2015, 64(16): 167701. doi: 10.7498/aps.64.167701
    [3] Zhang Bin, Wang Wei-Li, Niu Qiao-Li, Zou Xian-Shao, Dong Jun, Zhang Yong. Effects of annealing in H2 atomsphere on optoelectronical properties of Nb-doped TiO2 thin films. Acta Physica Sinica, 2014, 63(6): 068102. doi: 10.7498/aps.63.068102
    [4] Gu Shan-Shan, Hu Xiao-Jun, Huang Kai. Effects of annealing temperature on the microstructure and p-type conduction of B-doped nanocrystalline diamond films. Acta Physica Sinica, 2013, 62(11): 118101. doi: 10.7498/aps.62.118101
    [5] Liu Jian-Peng, Zhu Yan-Xu, Guo Wei-Ling, Yan Wei-Wei, Wu Guo-Qing. The effect of ITO annealing on electrical characteristic of GaN based LED. Acta Physica Sinica, 2012, 61(13): 137303. doi: 10.7498/aps.61.137303
    [6] Hu Mei-Jiao, Li Cheng, Xu Jian-Fang, Lai Hong-Kai, Chen Song-Yan. Formation and properties of GeOI prepared by cyclic thermal oxidation and annealing processes. Acta Physica Sinica, 2011, 60(7): 078102. doi: 10.7498/aps.60.078102
    [7] Luo Qing-Hong, Lou Yan-Zhi, Zhao Zhen-Ye, Yang Hui-Sheng. Effect of annealing on microstructure and mechanical propertiesof AlTiN multilayer coatings. Acta Physica Sinica, 2011, 60(6): 066201. doi: 10.7498/aps.60.066201
    [8] Tang Zheng-Xia, Shen Hong-Lie, Jiang Feng, Fang Ru, Lu Lin-Feng, Huang Hai-Bin, Cai Hong. Mechanism of large grain polycrystalline Si preparation by aluminum induced crystallization with temperature gradient profile. Acta Physica Sinica, 2010, 59(12): 8770-8775. doi: 10.7498/aps.59.8770
    [9] Yang Fan, Ma Jin, Kong Ling-Yi, Luan Cai-Na, Zhu Zhen. Structural, optical and electrical properties of Ga2(1-x)In2xO3 films prepared by metalorganic chemical vapor deposition. Acta Physica Sinica, 2009, 58(10): 7079-7082. doi: 10.7498/aps.58.7079
    [10] Song Chao, Chen Gu-Ran, Xu Jun, Wang Tao, Sun Hong-Cheng, Liu Yu, Li Wei, Chen Kun-Ji. Properties of electric transport in crystallized silicon films under different annealing temperatures. Acta Physica Sinica, 2009, 58(11): 7878-7883. doi: 10.7498/aps.58.7878
    [11] Wang Nan, Kong Chun-Yang, Zhu Ren-Jiang, Qin Guo-Ping, Dai Te-Li, Nan Mao, Ruan Hai-Bo. Preparation and characteristics research of p-type ZnO films. Acta Physica Sinica, 2007, 56(10): 5974-5978. doi: 10.7498/aps.56.5974
    [12] Wang Chong, Feng Qian, Hao Yue, Wan Hui. Effect of pre-metallization processing and annealing on Ni/Au Schottky contacts in AlGaN/GaN heterostructures. Acta Physica Sinica, 2006, 55(11): 6085-6089. doi: 10.7498/aps.55.6085
    [13] Zhang Xi-Jian, Ma Hong-Lei, Wang Qing-Pu, Ma Jin, Zong Fu-Jian, Xiao Hong-Di, Ji Feng. Effect of annealing on optical properties of MgxZn1-xO thin films deposited at low temperature. Acta Physica Sinica, 2006, 55(1): 437-440. doi: 10.7498/aps.55.437
    [14] Sun Cheng-Wei, Liu Zhi-Wen, Zhang Qing-Yu. Influence of annealing temperature on the microstructure and photoluminescence of ZnO films. Acta Physica Sinica, 2006, 55(1): 430-436. doi: 10.7498/aps.55.430
    [15] Li Huo-Quan, Ning Zhao-Yuan, Cheng Shan-Hua, Jiang Mei-Fu. Photoluminescence centers and shift of ZnO films deposited by rf magnetron sputtering. Acta Physica Sinica, 2004, 53(3): 867-870. doi: 10.7498/aps.53.867
    [16] Zhang De-Heng, Wang Qing-Pu, Xue Zhong-Ying. Ultra violet photoluminescenc of ZnO films on different substrates. Acta Physica Sinica, 2003, 52(6): 1484-1487. doi: 10.7498/aps.52.1484
    [17] Fang Ze-Bo, Gong Heng-Xiang, Liu Xue-Qin, Xu Da-Yin, Huang Chun-Ming, Wang Yin-Yue. Effects of annealing on the structure and photoluminescence of ZnO films. Acta Physica Sinica, 2003, 52(7): 1748-1751. doi: 10.7498/aps.52.1748
    [18] GUO DONG, CAI KAI, LI LONG-TU, GUI ZHI-LUN. ELECTRODEPOSITION OF DIAMOND-LIKE CARBON FILMS FROM ORGANIC SOLVENTS AND EFFECTS OF ANNEALING ON THE FILM STRUCTURE. Acta Physica Sinica, 2001, 50(12): 2413-2417. doi: 10.7498/aps.50.2413
    [19] WANG YONG-QIAN, CHEN CHANG-YONG, CHEN WEI-DE, YANG FU-HUA, DIAO HONG-WEI, XU ZHEN-JIA, ZHANG SHI-BIN, KONG GUANG-LIN, LIAO XIAN-BO. THE MICROSTRUCTURE AND ITS HIGH-TEMPERATURE ANNEALING BEHAVIOURS OF a-Si∶O∶H FILM. Acta Physica Sinica, 2001, 50(12): 2418-2422. doi: 10.7498/aps.50.2418
    [20] TONG LIU-NIU, HE XIAN-MEI, LU MU. EFFECT OF ANNEALING ON THE MAGNETIC PROPERTIES OF Ni80Co20 THIN FILMS WITH IMPURITY LAYERS. Acta Physica Sinica, 2000, 49(11): 2290-2295. doi: 10.7498/aps.49.2290
Metrics
  • Abstract views:  5766
  • PDF Downloads:  121
  • Cited By: 0
Publishing process
  • Received Date:  22 December 2017
  • Accepted Date:  02 February 2018
  • Published Online:  20 April 2019

/

返回文章
返回