-
Rare earth doped upconverting micro/nanoparticles with controlled size and structure,which are excited by near-infrared light and emit the visible light,possess many applications especially in the areas of biomedicine and photonics devices.There is no universally favored spectral profile in a variety of specific applications.We expect upconversion (UC) nanoparticles with the tunable spectral behavior to meet the demand for actual applications.Although the UC emission wavelengths are strictly limited by the electronic structure of the dopant,the spectral profile could be varied by many factors such as the structure,size,and crystallization. Varying matrix host is the most convenient approach to dynamically tuning UC that is essential for a variety of studies.However,this approach suffers a significant constraint due to insensitive response of most dopant luminescence centers to matrix host.In this paper,a facile EDTA-assisted hydrothermal approach is developed to the shape-selective synthesis of fluoride microcrystals including NaYF4 rods,LiYF4 octahedrons,and YF3 cuboid brick,by only tuning the pH of the mother liquid.The UC spectra of a series of Yb3+/Er3+-doped fluoride particles with the different shapes and phases are investigated in detail under a near-infrared co-focused laser excitation.The effects of matrix hosts on UC luminescence attributed to the 4f-4f transitions of the Er3+ ions in a single particle are amplified through elevating Yb3+ concentration.The associated tuning mechanisms are explored by using the power dependent UC luminescence and the temporal evolutions of up/down-conversion emission spectra. Mechanistic investigation reveals that the sensitive response of Er3+ UC emission to matrix host stems from maximal use of the various channels populated luminescence levels.It is well known that the population and depopulation of the luminescence levels strongly depend on the excitation power density,the energy level structure of electron,the ratio of the population ions between the two levels,maximum phonon energy and phonon density.The matrix plays the most important role in both the population and depopulation of the luminescence levels mediated by modifying the radiation relaxation probability and non-radiation relaxation probability via varying lattice symmetry and phonon energy.However,the fine modification of the matrix by doping is not always effective to luminescence tuning.In the current study,comparing with LiYF4 and YF3 matrixes,it is interestingly found that NaYF4 matrix can effectively tune the intensity ratio of red to green luminescence from 0.48 to 6.11 by varying Yb3+ concentration from 0 to 98% particle.The result indicates that the multiple aspects in the UC process could be influenced by Yb3+ doping NaYF4 matrix structure.We believe that Yb3+/Er3+ codoped NaYF4 matrixes with various Yb3+ concentrations will result in applications in displays,biological imaging,chemical sensing and anticounterfeiting.
-
Keywords:
- red to green radio /
- spectral tuning /
- host matrix /
- Yb3+ concentration
[1] Zhou B, Shi B, Jin D, Liu X 2015 Nat. Nanotechnol. 10 924
[2] Kaminskii A A, Lux O, Hanuza J, Rhee H, Eichler H J, Zhang J, Shirakawa A 2014 Phys. Status Solidi 251 1579
[3] Li K, Liu X, Zhang Y, Li X, Lian H, Lin J 2015 Inorg. Chem. 54 323
[4] Reddy A A, Das S, Goel A, Sen R, Siegel R, Mafra L, Ferreira J M 2013 AIP Adv. 3 022126
[5] Chen G, Qiu H, Prasad P N, Chen X 2014 Chem. Rev. 114 5161
[6] Deng R, Qin F, Chen R, Huang W, Hong M, Liu X 2015 Nat. Nanotechnol. 10 237
[7] Yang D, Hou Z, Cheng Z, Li C, Lin J 2015 Chem. Soc. Rev. 44 1416
[8] Sun L D, Wang Y F, Yan C H 2014 Acc. Chem. Res. 47 1001
[9] Gai S, Li C, Yang P, Lin J 2013 Chem. Rev. 114 2343
[10] Yuan Y, Min Y, Hu Q, Xing B, Liu B 2014 Nanoscale 6 11259
[11] Chen G, Shen J, Ohulchanskyy T Y, Patel N J, Kutikov A, Li Z, Song J, Pandey R K, Agren H, Prasad P N, Han G 2012 ACS Nano 6 8280
[12] Chen R, Ta V D, Xiao F, Zhang Q Y, Sun H D 2013 Small 9 1052
[13] Auzel F 2004 Chem. Rev. 104 139
[14] Tanabe S, Ohyagi T, Soga N, Hanada T 1992 Phys. Rev. B 46 3305
[15] Li P, Peng Q, Li Y 2009 Adv. Mater. 21 1945
[16] Zhang X Y, Wang J G, Xu C L, Pan Y, Hou Z Y, Ding J, Cheng L, Gao D L 2016 Acta Phys. Sin. 65 204205 (in Chinese)[张翔宇, 王晋国, 徐春龙, 潘渊, 侯兆阳, 丁健, 程琳, 高当丽 2016 物理学报 65 204205]
[17] Li X M, Zhang F, Zhao D Y 2013 Nano Today 8 643
[18] Zhang X, Gao D, Li L 2010 J. Appl. Phys. 107 123528
[19] Gao D, Zheng H, Tian Y, Cui M, Lei Y, He E, Zhang X 2010 J. Nanosci. Nanotechnol. 10 7694
[20] Chen G Y, Yang C H, Prasad P N 2013 Acc. Chem. Res. 46 1474
[21] Gao D, Tian D, Chong B, Li L, Zhang X 2016 J. Alloys Compd. 678 212
[22] Gao W, Wang R, Han Q, Dong J, Yan L, Zheng H 2015 J. Phys. Chem. C 119 2349
[23] Gao D, Tian D, Zhang X, Gao W 2016 Sci. Rep. 6 22433
[24] Zhang X, Wang M, Ding J, Deng J, Ran C, Yang Z 2014 Dalton Trans. 43 5453
[25] Zhang X, Wang M, Ding J 2014 RSC Adv. 4 29165
[26] Zhang X, Wang M, Ding J, Gao D, Shi Y, Song X 2012 CrystEngComm 14 8357
[27] Gao D, Zhang X, Chong B, Xiao G, Tian D 2017 Phys. Chem. Chem. Phys. 19 4288
[28] Yang J Z, Qiu J B, Yang Z W, Song Z G, Yang Y, Zhou D C 2015 Acta Phys. Sin. 64 138101 (in Chinese)[杨健芝, 邱建备, 杨正文, 宋志国, 杨勇, 周大成 2015 物理学报 64 138101]
[29] Gao D, Zhang X, Gao W 2013 ACS Appl. Mater. Interfaces 5 9732
[30] Gao D, Wang D, Zhang X, Feng X, Xin H, Yun S, Tian D 2018 J. Mater. Chem. C 6 622
[31] Orlovskii Y V, Reeves R J, Powell R C, Basiev T T, Pukhov K K 1994 Phys. Rev. B 49 3821
[32] Fong F K, Naberhuis S L, Miller M M 1972 J. Chem. Phys. 56 4020
-
[1] Zhou B, Shi B, Jin D, Liu X 2015 Nat. Nanotechnol. 10 924
[2] Kaminskii A A, Lux O, Hanuza J, Rhee H, Eichler H J, Zhang J, Shirakawa A 2014 Phys. Status Solidi 251 1579
[3] Li K, Liu X, Zhang Y, Li X, Lian H, Lin J 2015 Inorg. Chem. 54 323
[4] Reddy A A, Das S, Goel A, Sen R, Siegel R, Mafra L, Ferreira J M 2013 AIP Adv. 3 022126
[5] Chen G, Qiu H, Prasad P N, Chen X 2014 Chem. Rev. 114 5161
[6] Deng R, Qin F, Chen R, Huang W, Hong M, Liu X 2015 Nat. Nanotechnol. 10 237
[7] Yang D, Hou Z, Cheng Z, Li C, Lin J 2015 Chem. Soc. Rev. 44 1416
[8] Sun L D, Wang Y F, Yan C H 2014 Acc. Chem. Res. 47 1001
[9] Gai S, Li C, Yang P, Lin J 2013 Chem. Rev. 114 2343
[10] Yuan Y, Min Y, Hu Q, Xing B, Liu B 2014 Nanoscale 6 11259
[11] Chen G, Shen J, Ohulchanskyy T Y, Patel N J, Kutikov A, Li Z, Song J, Pandey R K, Agren H, Prasad P N, Han G 2012 ACS Nano 6 8280
[12] Chen R, Ta V D, Xiao F, Zhang Q Y, Sun H D 2013 Small 9 1052
[13] Auzel F 2004 Chem. Rev. 104 139
[14] Tanabe S, Ohyagi T, Soga N, Hanada T 1992 Phys. Rev. B 46 3305
[15] Li P, Peng Q, Li Y 2009 Adv. Mater. 21 1945
[16] Zhang X Y, Wang J G, Xu C L, Pan Y, Hou Z Y, Ding J, Cheng L, Gao D L 2016 Acta Phys. Sin. 65 204205 (in Chinese)[张翔宇, 王晋国, 徐春龙, 潘渊, 侯兆阳, 丁健, 程琳, 高当丽 2016 物理学报 65 204205]
[17] Li X M, Zhang F, Zhao D Y 2013 Nano Today 8 643
[18] Zhang X, Gao D, Li L 2010 J. Appl. Phys. 107 123528
[19] Gao D, Zheng H, Tian Y, Cui M, Lei Y, He E, Zhang X 2010 J. Nanosci. Nanotechnol. 10 7694
[20] Chen G Y, Yang C H, Prasad P N 2013 Acc. Chem. Res. 46 1474
[21] Gao D, Tian D, Chong B, Li L, Zhang X 2016 J. Alloys Compd. 678 212
[22] Gao W, Wang R, Han Q, Dong J, Yan L, Zheng H 2015 J. Phys. Chem. C 119 2349
[23] Gao D, Tian D, Zhang X, Gao W 2016 Sci. Rep. 6 22433
[24] Zhang X, Wang M, Ding J, Deng J, Ran C, Yang Z 2014 Dalton Trans. 43 5453
[25] Zhang X, Wang M, Ding J 2014 RSC Adv. 4 29165
[26] Zhang X, Wang M, Ding J, Gao D, Shi Y, Song X 2012 CrystEngComm 14 8357
[27] Gao D, Zhang X, Chong B, Xiao G, Tian D 2017 Phys. Chem. Chem. Phys. 19 4288
[28] Yang J Z, Qiu J B, Yang Z W, Song Z G, Yang Y, Zhou D C 2015 Acta Phys. Sin. 64 138101 (in Chinese)[杨健芝, 邱建备, 杨正文, 宋志国, 杨勇, 周大成 2015 物理学报 64 138101]
[29] Gao D, Zhang X, Gao W 2013 ACS Appl. Mater. Interfaces 5 9732
[30] Gao D, Wang D, Zhang X, Feng X, Xin H, Yun S, Tian D 2018 J. Mater. Chem. C 6 622
[31] Orlovskii Y V, Reeves R J, Powell R C, Basiev T T, Pukhov K K 1994 Phys. Rev. B 49 3821
[32] Fong F K, Naberhuis S L, Miller M M 1972 J. Chem. Phys. 56 4020
Catalog
Metrics
- Abstract views: 6718
- PDF Downloads: 167
- Cited By: 0