Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Spectral Regulation in Thermophotovoltaic Devices

Xiong Jia-Cheng Huang Zhe-Qun Zhang Heng Wang Qi-Xiang Cui Ke-Hang

Citation:

Spectral Regulation in Thermophotovoltaic Devices

Xiong Jia-Cheng, Huang Zhe-Qun, Zhang Heng, Wang Qi-Xiang, Cui Ke-Hang
PDF
Get Citation
  • Thermophotovoltaic (TPV) device converts thermal radiation to electricity output through photovoltaic effect. High-efficiency TPV devices have broad-range applications in grid-scale thermal storage, full-spectrum solar utilization, distributed thermal-electricity cogeneration and waste heat scavenging. The key to high-efficiency TPV devices lies in spectral regulation to achieve band-matching between thermal radiation of the emitters and electron transition of the photovoltaic cells. Recent advancement in nanophotonics, materials science as well as artificial intelligence for science have enabled milestone progresses in spectral regulation and record power conversion efficiency as high as 40% of TPV devices. Here we systematically review spectral regulation in TPV devices at the emitter end as well as the photovoltaic cell end. At the emitter end, spectral regulation is realized through thermal metamaterials and rare-earth intrinsic emitters to selectively enhance the in-band radiation and suppress the sub-bandgap radiation. At the photovoltaic cell end, spectral regulation mainly focuses on recycling the sub-bandgap thermal radiation through optical filter and back surface reflector applied at the front and back of the photovoltaic cells, respectively. We underline the light-matter interaction mechanisms and materials systems of different spectral regulation strategies. We also discuss the spectral regulation strategies in near-field TPV devices. Finally, we envision potential development pathway and prospects of spectral regulation to achieve scalable deployment of TPV devices in future.
  • [1]

    Datas A, Lopez-Ceballos A, Lopez E, Ramos A, del Canizo C 2022 Joule 6 418

    [2]

    Chan W R, Bermel P, Pilawa-Podgurski R C N, Marton C H, Jensen K F, Senkevich J J, Joannopoulos J D, Soljacic M, Celanovic I 2013 Proc. Natl. Acad. Sci. U.S.A. 110 5309

    [3]

    Chan W R, Stelmakh V, Ghebrebrhan M, Soljacic M, Joannopoulos J D, Celanovic I 2017 Energy Environ. Sci. 10 1367

    [4]

    Coutts T J 1999 Renew. Sust. Energ. Rev. 3 77

    [5]

    Nelson R E 2003 Semicond. Sci. Technol. 18 141

    [6]

    Wedlock B D 1963 Proc. IEEE 51 694

    [7]

    Guazzoni G, Kittl E, Shapiro S 1969 IEEE Trans. Electron Devices 16 256

    [8]

    Swanson R M 1978 1978 International Electron Devices Meeting Washington, DC, USA, December 4-6, 1978 70

    [9]

    Swanson R M 1980 International Electron Devices Meeting Washington, DC, USA, December 8-10, 1980 186

    [10]

    Woolf L D, Bass J C, Elsner N B 1986 Proceedings of the 32nd International Power Sources Symposium Cherry Hill, NJ, USA, June 9-12, 1986 101

    [11]

    Lowe R A, Chubb D L, Farmer S C, Good B S 1994 Appl. Phys. Lett. 64 3551

    [12]

    John S 1987 Phys. Rev. Lett. 58 2486

    [13]

    Yablonovitch E 1987 Phys. Rev. Lett. 58 2059

    [14]

    Narayanaswamy A, Chen G 2004 Phys. Rev. B 70 125101

    [15]

    Pralle M U, Moelders N, McNeal M P, Puscasu I, Greenwald A C, Daly J T, Johnson E A, George T, Choi D S, El-Kady I, Biswas R 2002 Appl. Phys. Lett. 81 4685

    [16]

    Lin S Y, Moreno J, Fleming J G 2003 Appl. Phys. Lett. 83 380

    [17]

    LaPotin A, Schulte K L, Steiner M A, Buznitsky K, Kelsall C C, Friedman D J, Tervo E J, France R M, Young M R, Rohskopf A, Verma S, Wang E N, Henry A 2022 Nature 604 287

    [18]

    Wernsman B, Siergiej R R, Link S D, Mahorter R G, Palmisiano M N, Wehrer R J, Schultz R W, Schmuck G P, Messham R L, Murray S, Murray C S, Newman F, Taylor D, DePoy D M, Rahmlow T 2004 IEEE Trans. Electron Devices 51 512

    [19]

    Catrysse P B, Fan S 2010 Nano Lett. 10 2944

    [20]

    Wang X, Chan W R, Stelmakh V, Soljacic M, Joannopoulos J D, Celanovic I, Fisher P H 2015 J. Phys.: Conf. Ser. 660 012034

    [21]

    Rinnerbauer V, Lenert A, Bierman D M, Yeng Y X, Chan W R, Geil R D, Senkevich J J, Joannopoulos J D, Wang E N, Soljacic M, Celanovic I 2014 Adv. Energy Mater. 4 1400334

    [22]

    Fleming J G, Lin S Y, El-Kady I, Biswas R, Ho K M 2002 Nature 417 52

    [23]

    Fleming J G 2005 Appl. Phys. Lett. 86 249902

    [24]

    Trupke T, Würfel P, Green M A 2004 Appl. Phys. Lett. 84 1997

    [25]

    Arpin K A, Losego M D, Braun P V 2011 Chem. Mater. 23 4783

    [26]

    Arpin K A, Losego M D, Cloud A N, Ning H, Mallek J, Sergeant N P, Zhu L, Yu Z, Kalanyan B, Parsons G N, Girolami G S, Abelson J R, Fan S, Braun P V 2013 Nat. Commun. 4 2630

    [27]

    Ghebrebrhan M, Bermel P, Yeng Y X, Celanovic I, Soljacic M, Joannopoulos J D 2011 Phys. Rev. A 83 033810

    [28]

    Jovanovic N, Celanovic I, Kassakian J 2007 7th World Conference on Thermophotovoltaic Generation of Electricity Madrid, Spain, Sep 25-27, 2006 47

    [29]

    Rinnerbauer V, Yeng Y X, Chan W R, Senkevich J J, Joannopoulos J D, Soljacic M, Celanovic I 2013 Opt. Express 21 11482

    [30]

    Silveirinha M, Engheta N 2006 Phys. Rev. Lett. 97 157403

    [31]

    Kinsey N, DeVault C, Boltasseva A, Shalaev V M 2019 Nature Reviews Materials 4 742

    [32]

    Vassant S, Hugonin J-P, Marquier F, Greffet J-J 2012 Opt. Express 20 23971

    [33]

    Molesky S, Dewalt C J, Jacob Z 2013 Opt. Express 21 96

    [34]

    Dyachenko P N, Molesky S, Petrov A Y, Stoermer M, Krekeler T, Lang S, Ritter M, Jacob Z, Eich M 2016 Nat. Commun. 7 11809

    [35]

    Kar C, Jena S, Udupa D V, Rao K D 2023 Opt. Laser Technol. 159 108928

    [36]

    Jeon N, Hernandez J J, Rosenmann D, Gray S K, Martinson A B F, Foley J J 2018 Adv. Energy Mater. 8 1801035

    [37]

    Hu R, Song J, Liu Y, Xi W, Zhao Y, Yu X, Cheng Q, Tao G, Luo X 2020 Nano Energy 72 104687

    [38]

    Wang Q, Huang Z, Li J, Huang G-Y, Wang D, Zhang H, Guo J, Ding M, Chen J, Zhang Z, Rui Z, Shang W, Xu J-Y, Zhang J, Shiomi J, Fu T, Deng T, Johnson S G, Xu H, Cui K 2023 Nano Lett. 4 1144

    [39]

    Guler U, Boltasseva A, Shalaev V M 2014 Science 344 263

    [40]

    Lee H-J, Smyth K, Bathurst S, Chou J, Ghebrebrhan M, Joannopoulos J, Saka N, Kim S-G 2013 Appl. Phys. Lett. 102 241904

    [41]

    Sai H, Kanamori Y, Yugami H 2003 Appl. Phys. Lett. 82 1685

    [42]

    Peykov D, Yeng Y X, Celanovic I, Joannopoulos J D, Schuh C A 2015 Opt. Express 23 9979

    [43]

    Rudisill S G, Wang Z, Stein A 2012 Langmuir 28 7310

    [44]

    Chirumamilla M, Krishnamurthy G V, Rout S S, Ritter M, Stoermer M, Petrov A Y, Eich M 2020 Sci. Rep. 10 3605

    [45]

    Nagpal P, Josephson D P, Denny N R, DeWilde J, Norris D J, Stein A 2011 J. Mater. Chem. 21 10836

    [46]

    Stelmakh V, Peykov D, Chan W R, Senkevich J J, Joannopoulos J D, Soljacic M, Celanovic I, Castillo R, Coulter K, Wei R 2015 J. Vac. Sci. Technol. A 33 061204

    [47]

    Chirumamilla M, Krishnamurthy G V, Knopp K, Krekeler T, Graf M, Jalas D, Ritter M, Stoermer M, Petrov A Y, Eich M 2019 Sci. Rep. 9 7241

    [48]

    Cui K, Lemaire P, Zhao H, Savas T, Parsons G, Hart A J 2018 Adv. Energy Mater. 8 1801471

    [49]

    McSherry S, Webb M, Kaufman J, Deng Z, Davoodabadi A, Ma T, Kioupakis E, Esfarjani K, Heron J T, Lenert A 2022 Nat. Nanotechnol. 17 1104

    [50]

    Dias M R S, Gong T, Duncan M A, Ness S C, McCormack S J, Leite M S, Munday J N 2023 Joule 7 2209

    [51]

    Torsello G, Lomascolo M, Licciulli A, Diso D, Tundo S, Mazzer M 2004 Nat. Mater. 3 632

    [52]

    Bitnar B, Durisch W, Mayor J C, Sigg H, Tschudi H R 2002 Sol. Energy Mater Sol. Cells 73 221

    [53]

    Bitnar S, Durisch W, Palfinger G, von Roth F, Vogt U, Brönstrup A, Seiler D 2004 Semiconductors 38 941

    [54]

    Nakagawa N, Ohtsubo H, Waku Y, Yugami H 2005 J. Eur. Ceram. Soc. 25 1285

    [55]

    Yugami H, Sai H, Nakamura K, Nakagawa N, Ohtsubo H 2000 28th IEEE Photovoltaic Specialists Conference Anchorage, AK, USA, September 15-22, 2000 1214

    [56]

    Shimizu M, Kohiyama A, Yugami H 2015 J. Photonics Energy 5 053099

    [57]

    Ferguson L G, Dogan F 2001 Mater Sci Eng B Solid State Mater Adv Technol 83 35

    [58]

    van de Groep J, Spinelli P, Polman A 2012 Nano Lett. 12 3138

    [59]

    Shemelya C, Demeo D F, Vandervelde T E 2014 Appl. Phys. Lett. 104 021115

    [60]

    Zhang S, Huang B, Bian Y, Han C, Tian D, Chen X, Qiu J, Zhu A, Yang A, Shao J 2023 Opt. Express 31 9186

    [61]

    Rahmlow T D, DePoy DM, Fourspring P M, Ehsani H, Lazo-Waseml J E, Gratrix E J 2007 AIP Conf. Proc. 890 59

    [62]

    Fourspring P M, DePoy D M, Rahmlow T D, Lazo-Wasem J E, Gratrix E J 2006 Appl. Opt. 45 1356

    [63]

    Bierman D M, Lenert A, Chan W R, Bhatia B, Celanovic I, Soljacic M, Wang E N 2016 Nat. Energy 1 16068

    [64]

    Varner J F, Wert D, Matari A, Nofal R, Foley J J 2020 Phys. Rev. Res. 2 013018

    [65]

    Jiang J, Fan J A 2021 Nanophotonics 10 361

    [66]

    Wang H, Zheng Z, Ji C, Jay Guo L 2021 Machine Learning-Science And Technology 2 025013

    [67]

    Omair Z, Scranton G, Pazos-Outon L M, Xiao T P, Steiner M A, Ganapati V, Peterson P F, Holzrichter J, Atwater H, Yablonovitch E 2019 Proc. Natl. Acad. Sci. U.S.A. 116 15356

    [68]

    Burger T, Fan D, Lee K, Forrest S R, Lenert A 2018 ACS Photonics 5 2748

    [69]

    Fan D, Burger T, McSherry S, Lee B, Lenert A, Forrest S R 2020 Nature 586 237

    [70]

    Lee B, Lentz R, Burger T, Roy-Layinde B, Lim J, Zhu R M, Fan D, Lenert A, Forrest S R 2022 ACS Energy Lett. 7 2388

    [71]

    Volokitin A I, Persson B N J 2007 Rev. Mod. Phys. 79 1291

    [72]

    DiMatteo R S, Greiff P, Finberg S L, Young-Waithe K A, Choy H K H, Masaki M M, Fonstad C G 2001 Appl. Phys. Lett. 79 1894

    [73]

    Pan J L, Choy H K H, Fonstad C G 2000 IEEE Trans. Electron Devices 47 241

    [74]

    Narayanaswamy A, Chen G 2003 Appl. Phys. Lett. 82 3544

    [75]

    Zhao B, Chen K, Buddhiraju S, Bhatt G, Lipson M, Fan S 2017 Nano Energy 41 344

    [76]

    Fiorino A, Zhu L, Thompson D, Mittapally R, Reddy P, Meyhofer E 2018 Nat. Nanotechnol. 13 806

    [77]

    Inoue T, Koyama T, Kang D D, Ikeda K, Asano T, Noda S 2019 Nano Lett. 19 3948

    [78]

    Lucchesi C, Cakiroglu D, Perez J-P, Taliercio T, Tournie E, Chapuis P-O, Vaillon R 2021 Nano Lett. 21 4524

    [79]

    Bright T J, Wang L P, Zhang Z M 2014 J. Heat Transfer 136 062701

    [80]

    Tong J K, Hsu W-C, Huang Y, Boriskina S V, Chen G 2015 Sci. Rep. 5 10661

    [81]

    Mittapally R, Lee B, Zhu L, Reihani A, Lim J W, Fan D, Forrest S R, Reddy P, Meyhofer E 2021 Nat. Commun. 12 4364

    [82]

    Inoue T, Ikeda K, Song B, Suzuki T, Ishino K, Asano T, Noda S 2021 ACS Photonics 8 2466

  • [1] Lai Zhen-Xin, Zhang Ye, Zhong Fan, Wang Qiang, Xiao Yan-Ling, Zhu Shi-Ning, Liu Hui. Wavelength-selective thermal emission metasurfaces based on synthetic dimensional topological Weyl points. Acta Physica Sinica, doi: 10.7498/aps.73.20240512
    [2] Si Ming-Qi, Wen Zhi-Lin, Zhang Qi-Jin, Dou Yin-Ping, Li Bo-Chao, Song Xiao-Wei, Xie Zhuo, Lin Jing-Quan. Radiation of extreme ultraviolet source and out-of-band from laser-irradiated low-density SnO2 target. Acta Physica Sinica, doi: 10.7498/aps.72.20222385
    [3] Meng Yong-Jun, Li Hong, Tang Jian-Wei, Chen Xue-Wen. Modulation of upconversion luminescence spectrum of single rare-earth-doped upconversion nanocrystal based on plasmonic nanocavity. Acta Physica Sinica, doi: 10.7498/aps.71.20211438
    [4] Xiang Yang, Zheng Jun, Li Chun-Lei, Wang Xiao-Ming, Yuan Rui-Yang. Circularly-polarized light controlled thermal spin transport in stanene nanoribbon. Acta Physica Sinica, doi: 10.7498/aps.70.20210197
    [5] Modulation of the upconversion luminescence spectrum of a single rare-earth-doped upconversion nanocrystal based on plasmonic nanocavity. Acta Physica Sinica, doi: 10.7498/aps.70.20211438
    [6] Du Wei, Yin Ge, Ma Yun-Gui. High-performance near-field thermophotovoltaic device with CaF2/W multilayer hyperbolic metamaterial emitter. Acta Physica Sinica, doi: 10.7498/aps.69.20200892
    [7] Liao Tian-Jun, Lü Yi-Xiang. Thermodynamic limit and optimal performance prediction of thermophotovoltaic energy conversion devices. Acta Physica Sinica, doi: 10.7498/aps.69.20191835
    [8] Li Ting, Lu Xiao-Tong, Zhang Qiang, Kong De-Huan, Wang Ye-Bing, Chang Hong. Evaluation of blackbody-radiation frequency shift in strontium optical lattice clock. Acta Physica Sinica, doi: 10.7498/aps.68.20182294
    [9] Yu Hai-Tong, Liu Dong, Yang Zhen, Duan Yuan-Yuan. Surface structure for manipulating the near-field spectral radiative transfer of thermophotovoltaics. Acta Physica Sinica, doi: 10.7498/aps.67.20171531
    [10] Zhang Xiang-Yu, Wang Dan, Shi Huan-Wen, Wang Jin-Guo, Hou Zhao-Yang, Zhang Li-Dong, Gao Dang-Li. Effect of host matrix on Yb3+ concentration controlled red to green luminescence ratio. Acta Physica Sinica, doi: 10.7498/aps.67.20171894
    [11] Zhang Xiang-Yu, Wang Jin-Guo, Xu Chun-Long, Pan Yuan, Hou Zhao-Yang, Ding Jian, Cheng Lin, Gao Dang-Li. Luminescence selective output characteristics tuned by laser pulse width in Tm3+ doped NaYF4 nanorods. Acta Physica Sinica, doi: 10.7498/aps.65.204205
    [12] Wu Xian-Liang, Zhang De-Xian, Cai Hong-Kun, Zhou Yan, Ni Jian, Zhang Jian-Jun. Device design of GaSb/CdS thin film thermal photovoltaic solar cells. Acta Physica Sinica, doi: 10.7498/aps.64.096102
    [13] Li Shu, Deng Li, Tian Dong-Feng, Li Gang. A new sampling method based on radiation energy density for location of radiative source particles. Acta Physica Sinica, doi: 10.7498/aps.63.239501
    [14] Zhang Pan-Jun, Sun Hui-Qing, Guo Zhi-You, Wang Du-Yang, Xie Xiao-Yu, Cai Jin-Xin, Zheng Huan, Xie Nan, Yang Bin. The spectrum-control of dual-wavelength LED with quantum dots planted in quantum wells. Acta Physica Sinica, doi: 10.7498/aps.62.117304
    [15] Li Shu, Li Gang, Tian Dong-Feng, Deng Li. An implicit Monte Carlo method for thermal radiation transport. Acta Physica Sinica, doi: 10.7498/aps.62.249501
    [16] He Guang-Yuan, Guo Jing, Jiao Zhong-Xing, Wang Biao. Control of the thermal lensing effect in solid-state laser. Acta Physica Sinica, doi: 10.7498/aps.61.094217
    [17] Sun Jian, Liu Wei-Qiang. Analysis of thermal protection mechanism of leading structure embedded high directional thermal conductivity layer. Acta Physica Sinica, doi: 10.7498/aps.61.124401
    [18] Wu Yi, Rong Ming-Zhe, Yang Fei, Wang Xiao-Hua, Ma Qiang, Wang Wei-Zong. Introduction of 6-band P-1 radiation model for numerical analysis of three-dimensional air arc plasma. Acta Physica Sinica, doi: 10.7498/aps.57.5761
    [19] Shi Wang-Lin, Liu Xing-Ye, Liu Zhen-Xing. Dirac radiation of Vaidya-Bonner-de Sitter black hole. Acta Physica Sinica, doi: 10.7498/aps.53.2396
    [20] ZHANG CAI-GEN, ZHANG YOU-WEN. EFFECT OF THE CIRCUMSTANCE RADIATION ON THE MEASUREMENT OF THE TARGET THERMAL RADIATION PROPERTIES. Acta Physica Sinica, doi: 10.7498/aps.30.953
Metrics
  • Abstract views:  166
  • PDF Downloads:  8
  • Cited By: 0
Publishing process
  • Available Online:  03 June 2024

/

返回文章
返回