Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Spectral regulation in thermophotovoltaic devices

Xiong Jia-Cheng Huang Zhe-Qun Zhang Heng Wang Qi-Xiang Cui Ke-Hang

Citation:

Spectral regulation in thermophotovoltaic devices

Xiong Jia-Cheng, Huang Zhe-Qun, Zhang Heng, Wang Qi-Xiang, Cui Ke-Hang
PDF
HTML
Get Citation
  • Thermophotovoltaic (TPV) device converts thermal radiation into electricity output through photovoltaic effect. High-efficiency TPV devices have extensive applications in grid-scale thermal storage, full-spectrum solar utilization, distributed thermal-electricity cogeneration, and waste heat recovery. The key to high-efficiency TPV devices lies in spectral regulation to achieve band-matching between thermal radiation of the emitters and electron transition of the photovoltaic cells. The latest advances in nanophotonics, materials science, and artificial intelligence have made milestone progress in spectral regulation and recording power conversion efficiency of up to 40% of TPV devices. Here we systematically review spectral regulation in TPV devices at the emitter end as well as the photovoltaic cell end. At the emitter end, spectral regulation is realized through thermal metamaterials and rare-earth intrinsic emitters to selectively enhance the in-band radiation and suppress the sub-bandgap radiation. At the photovoltaic cell end, spectral regulation mainly focuses on recycling the sub-bandgap thermal radiation through optical filters and back surface reflectors located at the front and back of the photovoltaic cells, respectively. We emphasize the light-matter interaction mechanisms and material systems of different spectral regulation strategies. We also discuss the spectral regulation strategies in near-field TPV devices. Finally, we look forward to potential development paths and prospects of spectral regulation to achieve scalable deployment of future TPV devices.
      Corresponding author: Huang Zhe-Qun, huangzhequn@sjtu.edu.cn ; Cui Ke-Hang, cuikehang@sjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 52371139), the Shanghai Sailing Program, China (Grant No. 21YF1419700), and the Shanghai Pujiang Program, China (Grant No. 19PJ1404600).
    [1]

    Datas A, Lopez-Ceballos A, Lopez E, Ramos A, del Canizo C 2022 Joule 6 418Google Scholar

    [2]

    Chan W R, Bermel P, Pilawa-Podgurski R C N, Marton C H, Jensen K F, Senkevich J J, Joannopoulos J D, Soljacic M, Celanovic I 2013 Proc. Natl. Acad. Sci. U.S.A. 110 5309Google Scholar

    [3]

    Chan W R, Stelmakh V, Ghebrebrhan M, Soljacic M, Joannopoulos J D, Celanovic I 2017 Energy Environ. Sci. 10 1367Google Scholar

    [4]

    Coutts T J 1999 Renew. Sust. Energ. Rev. 3 77Google Scholar

    [5]

    Nelson R E 2003 Semicond. Sci. Technol. 18 141Google Scholar

    [6]

    Wedlock B D 1963 Proc. IEEE 51 694Google Scholar

    [7]

    Guazzoni G, Kittl E, Shapiro S 1969 IEEE Trans. Electron Dev. 16 256

    [8]

    Swanson R M 1978 1978 International Electron Devices Meeting Washington, DC, USA, December 4–6, 1978 p70

    [9]

    Swanson R M 1980 International Electron Devices Meeting Washington, DC, USA, December 8–10, 1980 p186

    [10]

    Woolf L D, Bass J C, Elsner N B 1986 Proceedings of the 32nd International Power Sources Symposium Cherry Hill, NJ, USA, June 9–12, 1986 p101

    [11]

    Lowe R A, Chubb D L, Farmer S C, Good B S 1994 Appl. Phys. Lett. 64 3551Google Scholar

    [12]

    John S 1987 Phys. Rev. Lett. 58 2486Google Scholar

    [13]

    Yablonovitch E 1987 Phys. Rev. Lett. 58 2059Google Scholar

    [14]

    Narayanaswamy A, Chen G 2004 Phys. Rev. B 70 125101Google Scholar

    [15]

    Pralle M U, Moelders N, McNeal M P, Puscasu I, Greenwald A C, Daly J T, Johnson E A, George T, Choi D S, El-Kady I, Biswas R 2002 Appl. Phys. Lett. 81 4685Google Scholar

    [16]

    Lin S Y, Moreno J, Fleming J G 2003 Appl. Phys. Lett. 83 380Google Scholar

    [17]

    Wernsman B, Siergiej R R, Link S D, Mahorter R G, Palmisiano M N, Wehrer R J, Schultz R W, Schmuck G P, Messham R L, Murray S, Murray C S, Newman F, Taylor D, DePoy D M, Rahmlow T 2004 IEEE Trans. Electron Dev. 51 512Google Scholar

    [18]

    Fan D, Burger T, McSherry S, Lee B, Lenert A, Forrest S R 2020 Nature 586 237Google Scholar

    [19]

    LaPotin A, Schulte K L, Steiner M A, Buznitsky K, Kelsall C C, Friedman D J, Tervo E J, France R M, Young M R, Rohskopf A, Verma S, Wang E N, Henry A 2022 Nature 604 287Google Scholar

    [20]

    Catrysse P B, Fan S 2010 Nano Lett. 10 2944Google Scholar

    [21]

    Wang X, Chan W R, Stelmakh V, Soljacic M, Joannopoulos J D, Celanovic I, Fisher P H 2015 J. Phys. : Conf. Ser. 660 012034Google Scholar

    [22]

    Rinnerbauer V, Lenert A, Bierman D M, Yeng Y X, Chan W R, Geil R D, Senkevich J J, Joannopoulos J D, Wang E N, Soljacic M, Celanovic I 2014 Adv. Energy Mater. 4 1400334Google Scholar

    [23]

    Fleming J G, Lin S Y, El-Kady I, Biswas R, Ho K M 2002 Nature 417 52Google Scholar

    [24]

    Fleming J G 2005 Appl. Phys. Lett. 86 249902Google Scholar

    [25]

    Trupke T, Würfel P, Green M A 2004 Appl. Phys. Lett. 84 1997Google Scholar

    [26]

    Arpin K A, Losego M D, Braun P V 2011 Chem. Mater. 23 4783Google Scholar

    [27]

    Arpin K A, Losego M D, Cloud A N, Ning H, Mallek J, Sergeant N P, Zhu L, Yu Z, Kalanyan B, Parsons G N, Girolami G S, Abelson J R, Fan S, Braun P V 2013 Nat. Commun. 4 2630Google Scholar

    [28]

    Ghebrebrhan M, Bermel P, Yeng Y X, Celanovic I, Soljacic M, Joannopoulos J D 2011 Phys. Rev. A 83 033810Google Scholar

    [29]

    Jovanovic N, Celanovic I, Kassakian J 2007 7th World Conference on Thermophotovoltaic Generation of Electricity Madrid, Spain, September 25–27, 2006 p47

    [30]

    Rinnerbauer V, Yeng Y X, Chan W R, Senkevich J J, Joannopoulos J D, Soljacic M, Celanovic I 2013 Opt. Express 21 11482Google Scholar

    [31]

    Silveirinha M, Engheta N 2006 Phys. Rev. Lett. 97 157403Google Scholar

    [32]

    Kinsey N, DeVault C, Boltasseva A, Shalaev V M 2019 Nat. Rev. Mater. 4 742Google Scholar

    [33]

    Vassant S, Hugonin J P, Marquier F, Greffet J J 2012 Opt. Express 20 23971Google Scholar

    [34]

    Molesky S, Dewalt C J, Jacob Z 2013 Opt. Express 21 96Google Scholar

    [35]

    Dyachenko P N, Molesky S, Petrov A Y, Stoermer M, Krekeler T, Lang S, Ritter M, Jacob Z, Eich M 2016 Nat. Commun. 7 11809Google Scholar

    [36]

    Kar C, Jena S, Udupa D V, Rao K D 2023 Opt. Laser Technol. 159 108928Google Scholar

    [37]

    Jeon N, Hernandez J J, Rosenmann D, Gray S K, Martinson A B F, Foley J J 2018 Adv. Energy Mater. 8 1801035Google Scholar

    [38]

    Hu R, Song J L, Liu Y D, Xi W, Zhao Y T, Yu X J, Cheng Q, Tao G M, Luo X B 2020 Nano Energy 72 104687Google Scholar

    [39]

    Wang Q X, Huang Z Q, Li J Z, Huang G Y, Wang D W, Zhang H, Guo J, Ding M, Chen J T, Zhang Z H, Rui Z H, Shang W, Xu J Y, Zhang J, Shiomi J, Fu T R, Deng T, Johnson S G, Xu H X, Cui K H 2023 Nano Lett. 23 1144Google Scholar

    [40]

    Guler U, Boltasseva A, Shalaev V M 2014 Science 344 263Google Scholar

    [41]

    Lee H J, Smyth K, Bathurst S, Chou J, Ghebrebrhan M, Joannopoulos J, Saka N, Kim S G 2013 Appl. Phys. Lett. 102 241904Google Scholar

    [42]

    Sai H, Kanamori Y, Yugami H 2003 Appl. Phys. Lett. 82 1685Google Scholar

    [43]

    Peykov D, Yeng Y X, Celanovic I, Joannopoulos J D, Schuh C A 2015 Opt. Express 23 9979Google Scholar

    [44]

    Rudisill S G, Wang Z, Stein A 2012 Langmuir 28 7310Google Scholar

    [45]

    Chirumamilla M, Krishnamurthy G V, Rout S S, Ritter M, Stoermer M, Petrov A Y, Eich M 2020 Sci. Rep. 10 3605Google Scholar

    [46]

    Nagpal P, Josephson D P, Denny N R, DeWilde J, Norris D J, Stein A 2011 J. Mater. Chem. 21 10836Google Scholar

    [47]

    Stelmakh V, Peykov D, Chan W R, Senkevich J J, Joannopoulos J D, Soljacic M, Celanovic I, Castillo R, Coulter K, Wei R 2015 J. Vac. Sci. Technol. A 33 061204

    [48]

    Chirumamilla M, Krishnamurthy G V, Knopp K, Krekeler T, Graf M, Jalas D, Ritter M, Stoermer M, Petrov A Y, Eich M 2019 Sci. Rep. 9 7241Google Scholar

    [49]

    Cui K H, Lemaire P, Zhao H, Savas T, Parsons G, Hart A J 2018 Adv. Energy Mater. 8 1801471Google Scholar

    [50]

    McSherry S, Webb M, Kaufman J, Deng Z, Davoodabadi A, Ma T, Kioupakis E, Esfarjani K, Heron J T, Lenert A 2022 Nat. Nanotechnol. 17 1104Google Scholar

    [51]

    Dias M R S, Gong T, Duncan M A, Ness S C, McCormack S J, Leite M S, Munday J N 2023 Joule 7 2209Google Scholar

    [52]

    Torsello G, Lomascolo M, Licciulli A, Diso D, Tundo S, Mazzer M 2004 Nat. Mater. 3 632Google Scholar

    [53]

    Bitnar B, Durisch W, Mayor J C, Sigg H, Tschudi H R 2002 Sol. Energy Mater Sol. Cells 73 221Google Scholar

    [54]

    Bitnar S, Durisch W, Palfinger G, von Roth F, Vogt U, Brönstrup A, Seiler D 2004 Semiconductors 38 941Google Scholar

    [55]

    Nakagawa N, Ohtsubo H, Waku Y, Yugami H 2005 J. Eur. Ceram. Soc. 25 1285Google Scholar

    [56]

    Yugami H, Sai H, Nakamura K, Nakagawa N, Ohtsubo H 2000 28th IEEE Photovoltaic Specialists Conference Anchorage, AK, USA, September 15–22, 2000 p1214

    [57]

    Shimizu M, Kohiyama A, Yugami H 2015 J. Photonics Energy 5 053099Google Scholar

    [58]

    Ferguson L G, Dogan F 2001 Mater. Sci. Eng. B Solid State Mater. Adv. Technol. 83 35Google Scholar

    [59]

    van de Groep J, Spinelli P, Polman A 2012 Nano Lett. 12 3138Google Scholar

    [60]

    Shemelya C, Demeo D F, Vandervelde T E 2014 Appl. Phys. Lett. 104 021115Google Scholar

    [61]

    Zhang S H, Huang B H, Bian Y B, Han C Z, Tian D, Chen X M, Qiu J W, Zhu A W, Yang A X, Shao J X 2023 Opt. Express 31 9186Google Scholar

    [62]

    Rahmlow T D, DePoy DM, Fourspring P M, Ehsani H, Lazo-Waseml J E, Gratrix E J 2007 AIP Conf. Proc. 890 59Google Scholar

    [63]

    Fourspring P M, DePoy D M, Rahmlow T D, Lazo-Wasem J E, Gratrix E J 2006 Appl. Opt. 45 1356Google Scholar

    [64]

    Bierman D M, Lenert A, Chan W R, Bhatia B, Celanovic I, Soljacic M, Wang E N 2016 Nat. Energy 1 16068Google Scholar

    [65]

    Varner J F, Wert D, Matari A, Nofal R, Foley J J 2020 Phys. Rev. Res. 2 013018Google Scholar

    [66]

    Jiang J, Fan J A 2021 Nanophotonics 10 361

    [67]

    Wang H Z, Zheng Z Y, Ji C G, Jay Guo L 2021 Mach. Learn-Sci. Techn. 2 025013Google Scholar

    [68]

    Omair Z, Scranton G, Pazos-Outon L M, Xiao T P, Steiner M A, Ganapati V, Peterson P F, Holzrichter J, Atwater H, Yablonovitch E 2019 Proc. Natl. Acad. Sci. U. S. A. 116 15356Google Scholar

    [69]

    Burger T, Fan D, Lee K, Forrest S R, Lenert A 2018 ACS Photonics 5 2748Google Scholar

    [70]

    Lee B, Lentz R, Burger T, Roy-Layinde B, Lim J, Zhu R M, Fan D, Lenert A, Forrest S R 2022 ACS Energy Lett. 7 2388Google Scholar

    [71]

    Volokitin A I, Persson B N J 2007 Rev. Mod. Phys. 79 1291Google Scholar

    [72]

    DiMatteo R S, Greiff P, Finberg S L, Young-Waithe K A, Choy H K H, Masaki M M, Fonstad C G 2001 Appl. Phys. Lett. 79 1894Google Scholar

    [73]

    Pan J L, Choy H K H, Fonstad C G 2000 IEEE Trans. Electron Dev. 47 241Google Scholar

    [74]

    Narayanaswamy A, Chen G 2003 Appl. Phys. Lett. 82 3544Google Scholar

    [75]

    Zhao B, Chen K, Buddhiraju S, Bhatt G, Lipson M, Fan S 2017 Nano Energy 41 344Google Scholar

    [76]

    Fiorino A, Zhu L, Thompson D, Mittapally R, Reddy P, Meyhofer E 2018 Nat. Nanotechnol. 13 806Google Scholar

    [77]

    Inoue T, Koyama T, Kang D D, Ikeda K, Asano T, Noda S 2019 Nano Lett. 19 3948Google Scholar

    [78]

    Lucchesi C, Cakiroglu D, Perez J P, Taliercio T, Tournie E, Chapuis P-O, Vaillon R 2021 Nano Lett. 21 4524Google Scholar

    [79]

    Bright T J, Wang L P, Zhang Z M 2014 J. Heat Transfer 136 062701Google Scholar

    [80]

    Tong J K, Hsu W C, Huang Y, Boriskina S V, Chen G 2015 Sci. Rep. 5 10661Google Scholar

    [81]

    Mittapally R, Lee B, Zhu L, Reihani A, Lim J W, Fan D, Forrest S R, Reddy P, Meyhofer E 2021 Nat. Commun. 12 4364Google Scholar

    [82]

    Inoue T, Ikeda K, Song B, Suzuki T, Ishino K, Asano T, Noda S 2021 ACS Photonics 8 2466Google Scholar

  • 图 1  TPV器件中的能量传输示意图

    Figure 1.  Energy transport and schematic diagram of TPV devices.

    图 2  TPV发展历史中的重要节点[48,10,11,1419]

    Figure 2.  Key milestones in the history of TPV development[48,10,11,1419].

    图 3  TPV器件中光谱调控的主要方法

    Figure 3.  Main methods of spectral regulation in TPV devices.

    图 4  一维超结构选择性热发射器的光谱调控 (a), (b) 100 nm厚的ENZ与ENP薄膜在完美反射器上的吸收率[34]; (c) W/HfO2一维结构的吸收特性及示意图[35]; (d) W-SiO2/Si一维超结构选择性热发射器的结构示意图及其光谱发射率[39]; (e) W-SiO2/Si一维超结构选择性热发射器中两个DBR的透光率[39]; (f) W-SiO2/Si一维超结构选择性热发射器在TM和TE极化下的能带分布图[39]

    Figure 4.  Spectral regulation in one-dimensional metamaterial thermal emitter: (a), (b) Absorptivity of 100 nm-thick ENZ and ENP films on a perfect reflector[34]; (c) the spectral absorption and the structure of the one-dimensional W/HfO2 thermal emitter[35]; (d) the spectral emissivity and the structure of the one-dimensional W-SiO2/Si thermal emitter [39]; (e) the spectral transmittance of two DBRs in the one-dimensional W-SiO2/Si thermal emitter [39]; (f) the photonic band diagram of the W-SiO2/Si thermal emitter under TM and TE polarization[39].

    图 5  选择性热发射器在高温下的热稳定性 (a)—(c) Ta空腔光子晶体在1200 K高温工况下的结构变化仿真 (a) 2D截面图[43]; (b) 3D投影图[43]; (c) 200 h退火后的3D投影图[43]; (d), (e) W/HfO2热发射器制造完成时和1400 ℃真空退火6 h后的SEM横截面图[45]; (f), (g) W-CNT二维光子晶体热发射器在1273 K下退火12 h和168 h后的SEM图像[49]

    Figure 5.  Thermal stability of selective thermal emitters at high temperatures: (a)–(c) Simulation results of structural change of the Ta PhC at 1200 K, (a) 2D cross-section image, (b) 3D projection image after 0 hours, and (c) after 200 h annealing[43]; (d), (e) cross-sectional SEM images of the W/HfO2 selective thermal emitter (d) before and (e) after annealing at 1400 ℃ for 6 h under vacuum pressure [45]; (f), (g) SEM images of the W-CNT PhC selective thermal emitter after 12 h and 168 h annealing at 1273 K[49].

    图 6  双层薄膜结构发射器[51] 基于双层结构热发射器的 (a) InGaAsSb, (b) InGaAs, (c) Ge, (d) Si TPV性能; (e) 双层结构的热膨胀系数匹配度的评估标准

    Figure 6.  Bi-layer thin film structure emitter[51]: (a) InGaAsSb, (b) InGaAs, (c) Ge, (d) Si TPV performance based on series of bi-layer thermal emitters; (e) design criteria of thermal expansion mismatch for bi-layer thermal emitters.

    图 7  本征选择性发射器的光学性能 (a) Yb2O3选择性热发射器与1735 K黑体的辐射强度对比[53]; (b) Er2O3选择性热发射器与1735 K黑体的辐射强度对比[53]

    Figure 7.  Optical properties of the intrinsic selective emitters: (a) Comparison of radiation intensity between Yb2O3 selective thermal emitter and 1735 K blackbody[53]; (b) comparison of radiation intensity between Er2O3 selective thermal emitter and 1735 K blackbody[53].

    图 8  光滤波器的设计、优化与应用 (a) 使用梳齿型啁啾滤波器的TPV器件结构[64]; (b)—(e)基于ResNet生成神经网络的一维多层结构多目标全局优化[66], (b) ResNet全局优化示意图; (c) 优化所得到的45层滤波器的光谱反射率; (d) 优化所得到的45层滤波器的光谱反射率随入射角变化的函数; (e) 黑体白炽光源和优化所得到的45层滤波器后等效光源的发射功率

    Figure 8.  Design, optimization and application of optical filter: (a) Structure of TPV devices using chirped mirror optical filter [64]; (b)–(e) multiobjective global optimization of photonic structures based on ResNet generative neural networks[66]; (b) schematic of the ResNet Global optimization; (c) reflection spectra of a 45-layer ResNet-optimized optical filter; (d) reflection spectra of the 45-layer ResNet-optimized optical filter as a function of the incident angle; (e) emissive power of a blackbody incandescent source and an equivalent source sandwiched by the filter featured in (c).

    图 9  空气桥TPV中的光子利用[18] 带Au BSR的传统薄膜TPV (a)与带气桥反射器的薄膜TPV (b)的能量流示意图; (c) 在1500 K黑体热源下使用Au BSR的传统InGaAs薄膜电池的功率分布; (d) 在1500 K黑体热源下使用(b)所示空气桥TPV的功率分布

    Figure 9.  Photon utilization in air-bridge thermophotovoltaics[18]: Schematics of energy flow in a conventional thin-film TPV with Au BSR (a) versus a thin-film TPV with air-bridge reflector (b); (c) power distribution of a conventional thin-film InGaAs cell with a Au BSR operated with a 1500 K blackbody source; (d) power distribution of the air-bridge TPV shown in (b) operated using a 1500 K blackbody emitter.

    表 1  TPV热发射器的结构及其光谱性能汇总

    Table 1.  Summary of the structures and performance of TPV thermal emitters.

    参考
    文献
    材料与结构测试波长
    范围/μm
    设计
    温度/K
    测试
    温度
    光伏电池
    带隙/eV
    光谱
    效率/
    %
    [2]1D Si/SiO21.00—8.001293工作温度0.5534.5
    [39]1D Si/SiO2/W0.40—8.001473室温0.7365.6
    [37]1D W+SiO2/TiO2+合金0.80—6.001373工作温度0.5546.8
    [35]1D W/HfO20.65—10.01273室温0.5549.5
    [45]1D W/HfO20.50—4.001673室温0.7250.2
    [48]1D W/HfO20.50—3.501673室温0.7248.3
    [57]1D YSZ/W/YSZ0.30—4.001640室温0.6750.1
    [38]W+Al2O3+SiO2/TiO2+W–Al2O30.50—5.001696模拟0.7357.3
    [3]1D多晶Ta1.00—3.001327室温0.6260.0
    [22]2D Ta + HfO2涂覆0.25—2.501000室温0.5471.2
    [49]2D W + CNT0.50—5.001273室温0.7442.1
    [27]3D W反蛋白石结构0.50—5.001673室温0.6733.9
    [54]Yb2O30.80—45.01735工作温度0.6918.9
    [55]Al2O3/EAG1.00—9.001850工作温度0.7236.0
    [58]NiO掺杂MgO1.00—5.001473工作温度0.6945.9
    DownLoad: CSV
  • [1]

    Datas A, Lopez-Ceballos A, Lopez E, Ramos A, del Canizo C 2022 Joule 6 418Google Scholar

    [2]

    Chan W R, Bermel P, Pilawa-Podgurski R C N, Marton C H, Jensen K F, Senkevich J J, Joannopoulos J D, Soljacic M, Celanovic I 2013 Proc. Natl. Acad. Sci. U.S.A. 110 5309Google Scholar

    [3]

    Chan W R, Stelmakh V, Ghebrebrhan M, Soljacic M, Joannopoulos J D, Celanovic I 2017 Energy Environ. Sci. 10 1367Google Scholar

    [4]

    Coutts T J 1999 Renew. Sust. Energ. Rev. 3 77Google Scholar

    [5]

    Nelson R E 2003 Semicond. Sci. Technol. 18 141Google Scholar

    [6]

    Wedlock B D 1963 Proc. IEEE 51 694Google Scholar

    [7]

    Guazzoni G, Kittl E, Shapiro S 1969 IEEE Trans. Electron Dev. 16 256

    [8]

    Swanson R M 1978 1978 International Electron Devices Meeting Washington, DC, USA, December 4–6, 1978 p70

    [9]

    Swanson R M 1980 International Electron Devices Meeting Washington, DC, USA, December 8–10, 1980 p186

    [10]

    Woolf L D, Bass J C, Elsner N B 1986 Proceedings of the 32nd International Power Sources Symposium Cherry Hill, NJ, USA, June 9–12, 1986 p101

    [11]

    Lowe R A, Chubb D L, Farmer S C, Good B S 1994 Appl. Phys. Lett. 64 3551Google Scholar

    [12]

    John S 1987 Phys. Rev. Lett. 58 2486Google Scholar

    [13]

    Yablonovitch E 1987 Phys. Rev. Lett. 58 2059Google Scholar

    [14]

    Narayanaswamy A, Chen G 2004 Phys. Rev. B 70 125101Google Scholar

    [15]

    Pralle M U, Moelders N, McNeal M P, Puscasu I, Greenwald A C, Daly J T, Johnson E A, George T, Choi D S, El-Kady I, Biswas R 2002 Appl. Phys. Lett. 81 4685Google Scholar

    [16]

    Lin S Y, Moreno J, Fleming J G 2003 Appl. Phys. Lett. 83 380Google Scholar

    [17]

    Wernsman B, Siergiej R R, Link S D, Mahorter R G, Palmisiano M N, Wehrer R J, Schultz R W, Schmuck G P, Messham R L, Murray S, Murray C S, Newman F, Taylor D, DePoy D M, Rahmlow T 2004 IEEE Trans. Electron Dev. 51 512Google Scholar

    [18]

    Fan D, Burger T, McSherry S, Lee B, Lenert A, Forrest S R 2020 Nature 586 237Google Scholar

    [19]

    LaPotin A, Schulte K L, Steiner M A, Buznitsky K, Kelsall C C, Friedman D J, Tervo E J, France R M, Young M R, Rohskopf A, Verma S, Wang E N, Henry A 2022 Nature 604 287Google Scholar

    [20]

    Catrysse P B, Fan S 2010 Nano Lett. 10 2944Google Scholar

    [21]

    Wang X, Chan W R, Stelmakh V, Soljacic M, Joannopoulos J D, Celanovic I, Fisher P H 2015 J. Phys. : Conf. Ser. 660 012034Google Scholar

    [22]

    Rinnerbauer V, Lenert A, Bierman D M, Yeng Y X, Chan W R, Geil R D, Senkevich J J, Joannopoulos J D, Wang E N, Soljacic M, Celanovic I 2014 Adv. Energy Mater. 4 1400334Google Scholar

    [23]

    Fleming J G, Lin S Y, El-Kady I, Biswas R, Ho K M 2002 Nature 417 52Google Scholar

    [24]

    Fleming J G 2005 Appl. Phys. Lett. 86 249902Google Scholar

    [25]

    Trupke T, Würfel P, Green M A 2004 Appl. Phys. Lett. 84 1997Google Scholar

    [26]

    Arpin K A, Losego M D, Braun P V 2011 Chem. Mater. 23 4783Google Scholar

    [27]

    Arpin K A, Losego M D, Cloud A N, Ning H, Mallek J, Sergeant N P, Zhu L, Yu Z, Kalanyan B, Parsons G N, Girolami G S, Abelson J R, Fan S, Braun P V 2013 Nat. Commun. 4 2630Google Scholar

    [28]

    Ghebrebrhan M, Bermel P, Yeng Y X, Celanovic I, Soljacic M, Joannopoulos J D 2011 Phys. Rev. A 83 033810Google Scholar

    [29]

    Jovanovic N, Celanovic I, Kassakian J 2007 7th World Conference on Thermophotovoltaic Generation of Electricity Madrid, Spain, September 25–27, 2006 p47

    [30]

    Rinnerbauer V, Yeng Y X, Chan W R, Senkevich J J, Joannopoulos J D, Soljacic M, Celanovic I 2013 Opt. Express 21 11482Google Scholar

    [31]

    Silveirinha M, Engheta N 2006 Phys. Rev. Lett. 97 157403Google Scholar

    [32]

    Kinsey N, DeVault C, Boltasseva A, Shalaev V M 2019 Nat. Rev. Mater. 4 742Google Scholar

    [33]

    Vassant S, Hugonin J P, Marquier F, Greffet J J 2012 Opt. Express 20 23971Google Scholar

    [34]

    Molesky S, Dewalt C J, Jacob Z 2013 Opt. Express 21 96Google Scholar

    [35]

    Dyachenko P N, Molesky S, Petrov A Y, Stoermer M, Krekeler T, Lang S, Ritter M, Jacob Z, Eich M 2016 Nat. Commun. 7 11809Google Scholar

    [36]

    Kar C, Jena S, Udupa D V, Rao K D 2023 Opt. Laser Technol. 159 108928Google Scholar

    [37]

    Jeon N, Hernandez J J, Rosenmann D, Gray S K, Martinson A B F, Foley J J 2018 Adv. Energy Mater. 8 1801035Google Scholar

    [38]

    Hu R, Song J L, Liu Y D, Xi W, Zhao Y T, Yu X J, Cheng Q, Tao G M, Luo X B 2020 Nano Energy 72 104687Google Scholar

    [39]

    Wang Q X, Huang Z Q, Li J Z, Huang G Y, Wang D W, Zhang H, Guo J, Ding M, Chen J T, Zhang Z H, Rui Z H, Shang W, Xu J Y, Zhang J, Shiomi J, Fu T R, Deng T, Johnson S G, Xu H X, Cui K H 2023 Nano Lett. 23 1144Google Scholar

    [40]

    Guler U, Boltasseva A, Shalaev V M 2014 Science 344 263Google Scholar

    [41]

    Lee H J, Smyth K, Bathurst S, Chou J, Ghebrebrhan M, Joannopoulos J, Saka N, Kim S G 2013 Appl. Phys. Lett. 102 241904Google Scholar

    [42]

    Sai H, Kanamori Y, Yugami H 2003 Appl. Phys. Lett. 82 1685Google Scholar

    [43]

    Peykov D, Yeng Y X, Celanovic I, Joannopoulos J D, Schuh C A 2015 Opt. Express 23 9979Google Scholar

    [44]

    Rudisill S G, Wang Z, Stein A 2012 Langmuir 28 7310Google Scholar

    [45]

    Chirumamilla M, Krishnamurthy G V, Rout S S, Ritter M, Stoermer M, Petrov A Y, Eich M 2020 Sci. Rep. 10 3605Google Scholar

    [46]

    Nagpal P, Josephson D P, Denny N R, DeWilde J, Norris D J, Stein A 2011 J. Mater. Chem. 21 10836Google Scholar

    [47]

    Stelmakh V, Peykov D, Chan W R, Senkevich J J, Joannopoulos J D, Soljacic M, Celanovic I, Castillo R, Coulter K, Wei R 2015 J. Vac. Sci. Technol. A 33 061204

    [48]

    Chirumamilla M, Krishnamurthy G V, Knopp K, Krekeler T, Graf M, Jalas D, Ritter M, Stoermer M, Petrov A Y, Eich M 2019 Sci. Rep. 9 7241Google Scholar

    [49]

    Cui K H, Lemaire P, Zhao H, Savas T, Parsons G, Hart A J 2018 Adv. Energy Mater. 8 1801471Google Scholar

    [50]

    McSherry S, Webb M, Kaufman J, Deng Z, Davoodabadi A, Ma T, Kioupakis E, Esfarjani K, Heron J T, Lenert A 2022 Nat. Nanotechnol. 17 1104Google Scholar

    [51]

    Dias M R S, Gong T, Duncan M A, Ness S C, McCormack S J, Leite M S, Munday J N 2023 Joule 7 2209Google Scholar

    [52]

    Torsello G, Lomascolo M, Licciulli A, Diso D, Tundo S, Mazzer M 2004 Nat. Mater. 3 632Google Scholar

    [53]

    Bitnar B, Durisch W, Mayor J C, Sigg H, Tschudi H R 2002 Sol. Energy Mater Sol. Cells 73 221Google Scholar

    [54]

    Bitnar S, Durisch W, Palfinger G, von Roth F, Vogt U, Brönstrup A, Seiler D 2004 Semiconductors 38 941Google Scholar

    [55]

    Nakagawa N, Ohtsubo H, Waku Y, Yugami H 2005 J. Eur. Ceram. Soc. 25 1285Google Scholar

    [56]

    Yugami H, Sai H, Nakamura K, Nakagawa N, Ohtsubo H 2000 28th IEEE Photovoltaic Specialists Conference Anchorage, AK, USA, September 15–22, 2000 p1214

    [57]

    Shimizu M, Kohiyama A, Yugami H 2015 J. Photonics Energy 5 053099Google Scholar

    [58]

    Ferguson L G, Dogan F 2001 Mater. Sci. Eng. B Solid State Mater. Adv. Technol. 83 35Google Scholar

    [59]

    van de Groep J, Spinelli P, Polman A 2012 Nano Lett. 12 3138Google Scholar

    [60]

    Shemelya C, Demeo D F, Vandervelde T E 2014 Appl. Phys. Lett. 104 021115Google Scholar

    [61]

    Zhang S H, Huang B H, Bian Y B, Han C Z, Tian D, Chen X M, Qiu J W, Zhu A W, Yang A X, Shao J X 2023 Opt. Express 31 9186Google Scholar

    [62]

    Rahmlow T D, DePoy DM, Fourspring P M, Ehsani H, Lazo-Waseml J E, Gratrix E J 2007 AIP Conf. Proc. 890 59Google Scholar

    [63]

    Fourspring P M, DePoy D M, Rahmlow T D, Lazo-Wasem J E, Gratrix E J 2006 Appl. Opt. 45 1356Google Scholar

    [64]

    Bierman D M, Lenert A, Chan W R, Bhatia B, Celanovic I, Soljacic M, Wang E N 2016 Nat. Energy 1 16068Google Scholar

    [65]

    Varner J F, Wert D, Matari A, Nofal R, Foley J J 2020 Phys. Rev. Res. 2 013018Google Scholar

    [66]

    Jiang J, Fan J A 2021 Nanophotonics 10 361

    [67]

    Wang H Z, Zheng Z Y, Ji C G, Jay Guo L 2021 Mach. Learn-Sci. Techn. 2 025013Google Scholar

    [68]

    Omair Z, Scranton G, Pazos-Outon L M, Xiao T P, Steiner M A, Ganapati V, Peterson P F, Holzrichter J, Atwater H, Yablonovitch E 2019 Proc. Natl. Acad. Sci. U. S. A. 116 15356Google Scholar

    [69]

    Burger T, Fan D, Lee K, Forrest S R, Lenert A 2018 ACS Photonics 5 2748Google Scholar

    [70]

    Lee B, Lentz R, Burger T, Roy-Layinde B, Lim J, Zhu R M, Fan D, Lenert A, Forrest S R 2022 ACS Energy Lett. 7 2388Google Scholar

    [71]

    Volokitin A I, Persson B N J 2007 Rev. Mod. Phys. 79 1291Google Scholar

    [72]

    DiMatteo R S, Greiff P, Finberg S L, Young-Waithe K A, Choy H K H, Masaki M M, Fonstad C G 2001 Appl. Phys. Lett. 79 1894Google Scholar

    [73]

    Pan J L, Choy H K H, Fonstad C G 2000 IEEE Trans. Electron Dev. 47 241Google Scholar

    [74]

    Narayanaswamy A, Chen G 2003 Appl. Phys. Lett. 82 3544Google Scholar

    [75]

    Zhao B, Chen K, Buddhiraju S, Bhatt G, Lipson M, Fan S 2017 Nano Energy 41 344Google Scholar

    [76]

    Fiorino A, Zhu L, Thompson D, Mittapally R, Reddy P, Meyhofer E 2018 Nat. Nanotechnol. 13 806Google Scholar

    [77]

    Inoue T, Koyama T, Kang D D, Ikeda K, Asano T, Noda S 2019 Nano Lett. 19 3948Google Scholar

    [78]

    Lucchesi C, Cakiroglu D, Perez J P, Taliercio T, Tournie E, Chapuis P-O, Vaillon R 2021 Nano Lett. 21 4524Google Scholar

    [79]

    Bright T J, Wang L P, Zhang Z M 2014 J. Heat Transfer 136 062701Google Scholar

    [80]

    Tong J K, Hsu W C, Huang Y, Boriskina S V, Chen G 2015 Sci. Rep. 5 10661Google Scholar

    [81]

    Mittapally R, Lee B, Zhu L, Reihani A, Lim J W, Fan D, Forrest S R, Reddy P, Meyhofer E 2021 Nat. Commun. 12 4364Google Scholar

    [82]

    Inoue T, Ikeda K, Song B, Suzuki T, Ishino K, Asano T, Noda S 2021 ACS Photonics 8 2466Google Scholar

  • [1] Lai Zhen-Xin, Zhang Ye, Zhong Fan, Wang Qiang, Xiao Yan-Ling, Zhu Shi-Ning, Liu Hui. Wavelength-selective thermal emission metasurfaces based on synthetic dimensional topological Weyl points. Acta Physica Sinica, 2024, 73(11): 117802. doi: 10.7498/aps.73.20240512
    [2] Si Ming-Qi, Wen Zhi-Lin, Zhang Qi-Jin, Dou Yin-Ping, Li Bo-Chao, Song Xiao-Wei, Xie Zhuo, Lin Jing-Quan. Radiation of extreme ultraviolet source and out-of-band from laser-irradiated low-density SnO2 target. Acta Physica Sinica, 2023, 72(6): 065201. doi: 10.7498/aps.72.20222385
    [3] Meng Yong-Jun, Li Hong, Tang Jian-Wei, Chen Xue-Wen. Modulation of upconversion luminescence spectrum of single rare-earth-doped upconversion nanocrystal based on plasmonic nanocavity. Acta Physica Sinica, 2022, 71(2): 027801. doi: 10.7498/aps.71.20211438
    [4] Xiang Yang, Zheng Jun, Li Chun-Lei, Wang Xiao-Ming, Yuan Rui-Yang. Circularly-polarized light controlled thermal spin transport in stanene nanoribbon. Acta Physica Sinica, 2021, 70(14): 147301. doi: 10.7498/aps.70.20210197
    [5] Modulation of the upconversion luminescence spectrum of a single rare-earth-doped upconversion nanocrystal based on plasmonic nanocavity. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211438
    [6] Du Wei, Yin Ge, Ma Yun-Gui. High-performance near-field thermophotovoltaic device with CaF2/W multilayer hyperbolic metamaterial emitter. Acta Physica Sinica, 2020, 69(20): 204203. doi: 10.7498/aps.69.20200892
    [7] Liao Tian-Jun, Lü Yi-Xiang. Thermodynamic limit and optimal performance prediction of thermophotovoltaic energy conversion devices. Acta Physica Sinica, 2020, 69(5): 057202. doi: 10.7498/aps.69.20191835
    [8] Li Ting, Lu Xiao-Tong, Zhang Qiang, Kong De-Huan, Wang Ye-Bing, Chang Hong. Evaluation of blackbody-radiation frequency shift in strontium optical lattice clock. Acta Physica Sinica, 2019, 68(9): 093701. doi: 10.7498/aps.68.20182294
    [9] Yu Hai-Tong, Liu Dong, Yang Zhen, Duan Yuan-Yuan. Surface structure for manipulating the near-field spectral radiative transfer of thermophotovoltaics. Acta Physica Sinica, 2018, 67(2): 024209. doi: 10.7498/aps.67.20171531
    [10] Zhang Xiang-Yu, Wang Dan, Shi Huan-Wen, Wang Jin-Guo, Hou Zhao-Yang, Zhang Li-Dong, Gao Dang-Li. Effect of host matrix on Yb3+ concentration controlled red to green luminescence ratio. Acta Physica Sinica, 2018, 67(8): 084203. doi: 10.7498/aps.67.20171894
    [11] Zhang Xiang-Yu, Wang Jin-Guo, Xu Chun-Long, Pan Yuan, Hou Zhao-Yang, Ding Jian, Cheng Lin, Gao Dang-Li. Luminescence selective output characteristics tuned by laser pulse width in Tm3+ doped NaYF4 nanorods. Acta Physica Sinica, 2016, 65(20): 204205. doi: 10.7498/aps.65.204205
    [12] Wu Xian-Liang, Zhang De-Xian, Cai Hong-Kun, Zhou Yan, Ni Jian, Zhang Jian-Jun. Device design of GaSb/CdS thin film thermal photovoltaic solar cells. Acta Physica Sinica, 2015, 64(9): 096102. doi: 10.7498/aps.64.096102
    [13] Li Shu, Deng Li, Tian Dong-Feng, Li Gang. A new sampling method based on radiation energy density for location of radiative source particles. Acta Physica Sinica, 2014, 63(23): 239501. doi: 10.7498/aps.63.239501
    [14] Zhang Pan-Jun, Sun Hui-Qing, Guo Zhi-You, Wang Du-Yang, Xie Xiao-Yu, Cai Jin-Xin, Zheng Huan, Xie Nan, Yang Bin. The spectrum-control of dual-wavelength LED with quantum dots planted in quantum wells. Acta Physica Sinica, 2013, 62(11): 117304. doi: 10.7498/aps.62.117304
    [15] Li Shu, Li Gang, Tian Dong-Feng, Deng Li. An implicit Monte Carlo method for thermal radiation transport. Acta Physica Sinica, 2013, 62(24): 249501. doi: 10.7498/aps.62.249501
    [16] He Guang-Yuan, Guo Jing, Jiao Zhong-Xing, Wang Biao. Control of the thermal lensing effect in solid-state laser. Acta Physica Sinica, 2012, 61(9): 094217. doi: 10.7498/aps.61.094217
    [17] Sun Jian, Liu Wei-Qiang. Analysis of thermal protection mechanism of leading structure embedded high directional thermal conductivity layer. Acta Physica Sinica, 2012, 61(12): 124401. doi: 10.7498/aps.61.124401
    [18] Wu Yi, Rong Ming-Zhe, Yang Fei, Wang Xiao-Hua, Ma Qiang, Wang Wei-Zong. Introduction of 6-band P-1 radiation model for numerical analysis of three-dimensional air arc plasma. Acta Physica Sinica, 2008, 57(9): 5761-5767. doi: 10.7498/aps.57.5761
    [19] Shi Wang-Lin, Liu Xing-Ye, Liu Zhen-Xing. Dirac radiation of Vaidya-Bonner-de Sitter black hole. Acta Physica Sinica, 2004, 53(7): 2396-2400. doi: 10.7498/aps.53.2396
    [20] ZHANG CAI-GEN, ZHANG YOU-WEN. EFFECT OF THE CIRCUMSTANCE RADIATION ON THE MEASUREMENT OF THE TARGET THERMAL RADIATION PROPERTIES. Acta Physica Sinica, 1981, 30(7): 953-961. doi: 10.7498/aps.30.953
Metrics
  • Abstract views:  2083
  • PDF Downloads:  91
  • Cited By: 0
Publishing process
  • Received Date:  07 May 2024
  • Accepted Date:  26 May 2024
  • Available Online:  03 June 2024
  • Published Online:  20 July 2024

/

返回文章
返回