Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Surface structure for manipulating the near-field spectral radiative transfer of thermophotovoltaics

Yu Hai-Tong Liu Dong Yang Zhen Duan Yuan-Yuan

Citation:

Surface structure for manipulating the near-field spectral radiative transfer of thermophotovoltaics

Yu Hai-Tong, Liu Dong, Yang Zhen, Duan Yuan-Yuan
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • To improve the efficiency and output power of the nano-gap thermophotovoltaic (TPV) power generation system, surface rectangular grating structures are added to the top surface of the group Ⅲ-V semiconductor cell to control the spectrum of near-field radiative transfer. Doped zinc oxide that supports surface waves at near-infrared wavelengths is selected as the TPV emitter. When paired with GaSb grating structures, the surface plasmon polariton excited by the emitter and the light trapping effect by the grating tunnels will be coupled, which results in a significantly and selectively enhanced near-field radiative heat flux within a narrow spectral region above the cell bandgap, thereby fulfilling the design purpose. This physical mechanism is explained by a direct finite-difference time-domain (FDTD) simulation based on the Langevin approach. The material volume meshgrids filled with random dipole sources can act as the thermal emission source and the radiative heat flux is calculated by solving the Maxwell equations numerically. The spectral results show that adding rectangular grating structures to GaSb not only increases radiative transfer in the expected wavelength region over the unstructured case, resulting in a heat flux surpassing that of a far-field blackbody source at the same temperature, but also suppresses the unwanted long-wavelength heat flux that causes radiative loss and cell heating. With a vacuum gap of 200 nm between the emitter and the cell, using a bulk GaSb cell with rectangular gratings can double the spectral flux of the blackbody emitter case, and using an ultrathin GaSb cell with surface structures and back reflectors further increases this ratio to 2.84 due to the total internal reflection controlled by the cell thickness. The amplitude and wavelength of the spectral peak are controlled by the grating size parameters. Low filling ratio gratings with lower-aspect-ratio grating channels generally have sharper enhancement peaks but lower total radiative heat flux, while high filling ratio structures with higher-aspect-ratio channels have better heat flux improvement but might also result in lower conversion efficiency due to the broader spectrum. The rigorous approach reveals the detailed physical mechanism that is otherwise unseen with effective medium approaches for inhomogeneous structures or the Derjaguin proximity approximation. Overall the results of this study enable an enhancement of near-field radiative heat flux limited within a narrow wavelength range shorter than the cell bandgap, offering practical benefit to the application of TPV power generation with higher feasible power and conversion efficiency.
      Corresponding author: Duan Yuan-Yuan, yyduan@tsinghua.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51621062, 51606099).
    [1]

    Liu D, Yu H T, Yang Z, Duan Y Y 2015 J. Eng. Thermophys. 36 698 (in Chinese)[刘东, 于海童, 杨震, 段远源 2015 工程热物理学报 36 698]

    [2]

    Coutts T J 1999 Renewable and Sustainable Energy Reviews 3 77

    [3]

    Lenert A, Bierman D M, Nam Y, Chan W R, Celanovi C I, Soljačić M, Wang E N 2014 Nat. Nanotechnol. 9 126

    [4]

    Basu S, Chen Y, Zhang Z M 2007 Int. J. Energ. Res. 31 689

    [5]

    Hanamura K, Fukai H, Srinivasan E, Asano M, Masuhara T 2011 ASME/JSME 8th Thermal Engineering Joint Conference Hawaii, USA, March 2011

    [6]

    Geng C, Zheng Y, Zhang Y Z, Yan H 2016 Acta Phys. Sin. 65 070201 (in Chinese)[耿超, 郑义, 张永哲, 严辉 2016 物理学报 65 070201]

    [7]

    Ijiro T, Yamada N 2015 Appl. Phys. Lett. 106 23103

    [8]

    Chalabi H, Hasman E, Brongersma M L 2015 Phys. Rev. B 91 14302

    [9]

    Molesky S, Jacob Z 2015 Phys. Rev. B 91 205435

    [10]

    Lu D, Das A, Park W 2017 Opt. Express 25 12999

    [11]

    Zhang Z M 2007 Nano/Microscale Heat Transfer (New York: McGraw-Hill) p377

    [12]

    Francoeur M, Meng M P, Vaillon R 2009 J. Quant. Spectr. Radiat. Transfer 110 2002

    [13]

    Li J Y, Xuan Y M, Li Q, Han Y G 2013 J. Eng. Thermophys. 34 1548 (in Chinese)[李佳玉, 宣益民, 李强, 韩玉阁 2013 工程热物理学报 34 1548]

    [14]

    Wu H H, Huang Y, Zhu K Y 2016 J. Eng. Thermophys. 37 597 (in Chinese)[吴会海, 黄勇, 朱克勇 2016 工程热物理学报 37 597]

    [15]

    Zhu K Y, Huang Y, Wu H H 2016 J. Eng. Thermophys. 37 2393 (in Chinese)[朱克勇, 黄勇, 吴会海 2016 工程热物理学报 37 2393]

    [16]

    Vongsoasup N, Francoeur M, Hanamura K 2017 Int. J. Heat Mass Transfer 115 326

    [17]

    Chang J Y, Yang Y, Wang L 2015 Int. J. Heat Mass Transfer 87 237

    [18]

    Zhang R Z, Zhang Z M 2017 J. Quant. Spectr. Radiat. Transfer 197 132

    [19]

    Yu H T, Liu D, Duan Y Y, Zhen Y 2015 Int. J. Heat Mass Transfer 87 303

    [20]

    Luo C, Narayanaswamy A, Chen G, Joannopoulos J D 2004 Phys. Rev. Lett. 93 213905

    [21]

    Lussange J, Gurout R, Rosa F S S, Greffet J J, Lambrecht A, Reynaud S 2012 Phys. Rev. B 86 85432

    [22]

    Bai Y, Jiang Y, Liu L 2015 J. Quant. Spectr. Radiat. Transfer 158 36

    [23]

    Kanamori Y, Kobayashi K, Yugami H, Hane K 2003 Jpn. J. Appl. Phys. 42 4020

    [24]

    Bernardi M P, Dupr O, Blandre E, Chapuis P O, Vaillon R, Francoeur M 2015 Sci. Rep. 5 11626

    [25]

    Didari A, Meng M P 2017 J. Quant. Spectr. Radiat. Transfer 197 95

    [26]

    Datas A, Hirashima D, Hanamura K 2013 J. Therm. Sci. Tech. 8 91

    [27]

    Kim J, Naik G V, Emani N K, Guler U, Boltasseva A 2013 IEEE J. Sel. Top. Quant. 19 4601907

    [28]

    Djuriić A B, Li E H, Raki C D, Majewski M L 2000 Appl. Phys. A 70 29

    [29]

    Yang Y, Wang L 2016 Phys. Rev. Lett. 117 44301

    [30]

    Wei B, Li X Y, Wang F, Ge D B 2009 Acta Phys. Sin. 58 6174 (in Chinese)[魏兵, 李小勇, 王飞, 葛德彪 2009 物理学报 58 6174]

    [31]

    Yu H, Liu D, Yang Z, Duan Y 2017 Sci. Rep. 7 1026

    [32]

    Kim J, Hwang J, Song K, Kim N, Shin J C, Lee J 2016 Appl. Phys. Lett. 108 253101

  • [1]

    Liu D, Yu H T, Yang Z, Duan Y Y 2015 J. Eng. Thermophys. 36 698 (in Chinese)[刘东, 于海童, 杨震, 段远源 2015 工程热物理学报 36 698]

    [2]

    Coutts T J 1999 Renewable and Sustainable Energy Reviews 3 77

    [3]

    Lenert A, Bierman D M, Nam Y, Chan W R, Celanovi C I, Soljačić M, Wang E N 2014 Nat. Nanotechnol. 9 126

    [4]

    Basu S, Chen Y, Zhang Z M 2007 Int. J. Energ. Res. 31 689

    [5]

    Hanamura K, Fukai H, Srinivasan E, Asano M, Masuhara T 2011 ASME/JSME 8th Thermal Engineering Joint Conference Hawaii, USA, March 2011

    [6]

    Geng C, Zheng Y, Zhang Y Z, Yan H 2016 Acta Phys. Sin. 65 070201 (in Chinese)[耿超, 郑义, 张永哲, 严辉 2016 物理学报 65 070201]

    [7]

    Ijiro T, Yamada N 2015 Appl. Phys. Lett. 106 23103

    [8]

    Chalabi H, Hasman E, Brongersma M L 2015 Phys. Rev. B 91 14302

    [9]

    Molesky S, Jacob Z 2015 Phys. Rev. B 91 205435

    [10]

    Lu D, Das A, Park W 2017 Opt. Express 25 12999

    [11]

    Zhang Z M 2007 Nano/Microscale Heat Transfer (New York: McGraw-Hill) p377

    [12]

    Francoeur M, Meng M P, Vaillon R 2009 J. Quant. Spectr. Radiat. Transfer 110 2002

    [13]

    Li J Y, Xuan Y M, Li Q, Han Y G 2013 J. Eng. Thermophys. 34 1548 (in Chinese)[李佳玉, 宣益民, 李强, 韩玉阁 2013 工程热物理学报 34 1548]

    [14]

    Wu H H, Huang Y, Zhu K Y 2016 J. Eng. Thermophys. 37 597 (in Chinese)[吴会海, 黄勇, 朱克勇 2016 工程热物理学报 37 597]

    [15]

    Zhu K Y, Huang Y, Wu H H 2016 J. Eng. Thermophys. 37 2393 (in Chinese)[朱克勇, 黄勇, 吴会海 2016 工程热物理学报 37 2393]

    [16]

    Vongsoasup N, Francoeur M, Hanamura K 2017 Int. J. Heat Mass Transfer 115 326

    [17]

    Chang J Y, Yang Y, Wang L 2015 Int. J. Heat Mass Transfer 87 237

    [18]

    Zhang R Z, Zhang Z M 2017 J. Quant. Spectr. Radiat. Transfer 197 132

    [19]

    Yu H T, Liu D, Duan Y Y, Zhen Y 2015 Int. J. Heat Mass Transfer 87 303

    [20]

    Luo C, Narayanaswamy A, Chen G, Joannopoulos J D 2004 Phys. Rev. Lett. 93 213905

    [21]

    Lussange J, Gurout R, Rosa F S S, Greffet J J, Lambrecht A, Reynaud S 2012 Phys. Rev. B 86 85432

    [22]

    Bai Y, Jiang Y, Liu L 2015 J. Quant. Spectr. Radiat. Transfer 158 36

    [23]

    Kanamori Y, Kobayashi K, Yugami H, Hane K 2003 Jpn. J. Appl. Phys. 42 4020

    [24]

    Bernardi M P, Dupr O, Blandre E, Chapuis P O, Vaillon R, Francoeur M 2015 Sci. Rep. 5 11626

    [25]

    Didari A, Meng M P 2017 J. Quant. Spectr. Radiat. Transfer 197 95

    [26]

    Datas A, Hirashima D, Hanamura K 2013 J. Therm. Sci. Tech. 8 91

    [27]

    Kim J, Naik G V, Emani N K, Guler U, Boltasseva A 2013 IEEE J. Sel. Top. Quant. 19 4601907

    [28]

    Djuriić A B, Li E H, Raki C D, Majewski M L 2000 Appl. Phys. A 70 29

    [29]

    Yang Y, Wang L 2016 Phys. Rev. Lett. 117 44301

    [30]

    Wei B, Li X Y, Wang F, Ge D B 2009 Acta Phys. Sin. 58 6174 (in Chinese)[魏兵, 李小勇, 王飞, 葛德彪 2009 物理学报 58 6174]

    [31]

    Yu H, Liu D, Yang Z, Duan Y 2017 Sci. Rep. 7 1026

    [32]

    Kim J, Hwang J, Song K, Kim N, Shin J C, Lee J 2016 Appl. Phys. Lett. 108 253101

  • [1] Yang Qi-Li, Zhang Xing-Fang, Liu Feng-Shou, Yan Xin, Liang Lan-Ju. Multiple Fano resonances in gold split ring disk dimers. Acta Physica Sinica, 2022, 71(2): 027802. doi: 10.7498/aps.71.20210855
    [2] Du Wei, Yin Ge, Ma Yun-Gui. High-performance near-field thermophotovoltaic device with CaF2/W multilayer hyperbolic metamaterial emitter. Acta Physica Sinica, 2020, 69(20): 204203. doi: 10.7498/aps.69.20200892
    [3] Huang Yun-Huan, Li Pu. Extinction properties of gold nanorod complexes. Acta Physica Sinica, 2015, 64(20): 207301. doi: 10.7498/aps.64.207301
    [4] Qin Fei-Fei, Zhang Hai-Ming, Wang Cai-Xia, Guo Cong, Zhang Jing-Jing. Design and simulation of anodic aluminum oxide nanograting double light trapping structure for thin film silicon solar cells. Acta Physica Sinica, 2014, 63(19): 198802. doi: 10.7498/aps.63.198802
    [5] Zhu Xiao-Min, Ren Xin-Cheng, Guo Li-Xin. Study on wide-band scattering from rectangular cross-section above rough land surface with exponential type distribution using FDTD. Acta Physica Sinica, 2014, 63(5): 054101. doi: 10.7498/aps.63.054101
    [6] Liu Jian-Xiao, Zhang Jun-Liang, Su Ming-Min. Finite-difference time domain method for the analysis of radar scattering characteristic of metal target coated with anisotropic ferrite. Acta Physica Sinica, 2014, 63(13): 137501. doi: 10.7498/aps.63.137501
    [7] Chen Xin-Lian, Kong Fan-Min, Li Kang, Gao Hui, Yue Qing-Yang. Improvement of light extraction efficiency of GaN-based blue light-emitting diode by disorder photonic crystal. Acta Physica Sinica, 2013, 62(1): 017805. doi: 10.7498/aps.62.017805
    [8] Ren Xin-Cheng, Guo Li-Xin, Jiao Yong-Chang. Investigation of electromagnetic scattering interaction between the column with rectangular cross-section and rough land surface covered with snow using finite difference time domain method. Acta Physica Sinica, 2012, 61(14): 144101. doi: 10.7498/aps.61.144101
    [9] Zhang Jun, Yu Tian-Bao, Liu Nian-Hua, Liao Qing-Hua, He Ling-Juan. Propagation properties of light in multimode photonic crystal waveguides with triangular lattices based on total internal reflection. Acta Physica Sinica, 2011, 60(10): 104217. doi: 10.7498/aps.60.104217
    [10] Zhang Xuan, Liao Qing-Hua, Chen Shu-Wen, Hu Ping, Yu Tian-Bao, Liu Nian-Hua. Proposal of novel and efficient polarization beam splitter. Acta Physica Sinica, 2011, 60(10): 104215. doi: 10.7498/aps.60.104215
    [11] Guo Hao, Wu Ping, Yu Tian-Bao, Liao Qing-Hua, Liu Nian-Hua, Huang Yong-Zhen. Design of novel polarization beam splitter in two-dimensional photonic crystal. Acta Physica Sinica, 2010, 59(8): 5547-5552. doi: 10.7498/aps.59.5547
    [12] Wang Guo-Jun, Wu Shi-Fa, Li Xu-Feng, Li Rui, Duan Jian-Min, Pan Shi. Numerical simulation of the near-field distribution of light spot of aperture pyramid-type optical probe with a metal tip. Acta Physica Sinica, 2010, 59(1): 192-198. doi: 10.7498/aps.59.192
    [13] Zhang Hai-Feng, Ma Li, Liu Shao-Bin. Defect mode properties of magnetized plasma photonic crystals. Acta Physica Sinica, 2009, 58(2): 1071-1076. doi: 10.7498/aps.58.1071
    [14] Xiang Yang, Qian Zu-Ping, Liu Xian, Bao Jun-Song. Analysis and simulation on propagation characteristics in waveguide filled with single-negative medium layers. Acta Physica Sinica, 2008, 57(9): 5537-5541. doi: 10.7498/aps.57.5537
    [15] Wang Hui-Qin, Liu Zheng-Dong, Wang Bing. The spatial distribution of optical field in random media with different filling densities of the same material particles. Acta Physica Sinica, 2008, 57(4): 2186-2191. doi: 10.7498/aps.57.2186
    [16] Yan Chang-Chun, Xue Guo-Gang, Liu Cheng, Chen Hao, Cui Yi-Ping. A method of acquiring a dark hollow beam of nanometer level. Acta Physica Sinica, 2007, 56(1): 160-164. doi: 10.7498/aps.56.160
    [17] Wang Hong, Ouyang Zheng_Biao, Han Yan-Ling, Meng Qing-Sheng, Luo Xian-Da, Liu Jin-Song. Effect of the strength of randomness on lasing threshold in one-dimensional partially random media. Acta Physica Sinica, 2007, 56(5): 2616-2622. doi: 10.7498/aps.56.2616
    [18] Liu Shao-Bin, Zhu Chuan-Xi, Yuan Nai-Chang. FDTD simulation for plasma photonic crystals. Acta Physica Sinica, 2005, 54(6): 2804-2808. doi: 10.7498/aps.54.2804
    [19] Zhou Mei, Chen Xiao-Shuang, Xu Jing, Zeng Yong, Wu Yan-Rui, Lu Wei, Wang Lian-Wei, Chen Yu. Photonic band gap of two-dimensional photonic crystal based on silicon in mid-infrared. Acta Physica Sinica, 2005, 54(1): 411-415. doi: 10.7498/aps.54.411
    [20] Xiao Jia-Xi, Qi Guo-Sheng, Hu Hua, Xu Duan-Yi. Analysis on the principle of multilevel optical data recording and the study on the processing of the front signals of a multilevel read-write system. Acta Physica Sinica, 2005, 54(1): 102-106. doi: 10.7498/aps.54.102
Metrics
  • Abstract views:  7125
  • PDF Downloads:  363
  • Cited By: 0
Publishing process
  • Received Date:  03 July 2017
  • Accepted Date:  07 September 2017
  • Published Online:  20 January 2019

/

返回文章
返回