Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Normal-mode splitting induced by homogeneous electromagnetic fields in cavities filled with effective zero-index metamaterials

Xu Xiao-Hu Chen Yong-Qiang Guo Zhi-Wei Sun Yong Miao Xiang-Yang

Citation:

Normal-mode splitting induced by homogeneous electromagnetic fields in cavities filled with effective zero-index metamaterials

Xu Xiao-Hu, Chen Yong-Qiang, Guo Zhi-Wei, Sun Yong, Miao Xiang-Yang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In cavity quantum electrodynamics (cQED), how an atom behaves in a cavity is what people care about. The coupling strength (g) between cavity field and atoms plays a fundamental role in various QED effects including Rabi splitting. In the solid-state case, when an atomic-like two-level system such as a single quantum dot (QD) is placed into a cavity, Rabi splitting would occur if g is strong enough. In the classical limit, when a QD in a cavity changes into a classical oscillator, the normal-mode splitting would also take place. It is known that g relies on the local fields at the places of the QDs or classical oscillators inside the cavity. However, for both cases, the traditional cavity modes involved are all in the form of standing waves and the localized fields are position-dependent. To ensure strong coupling between QDs or classical oscillators and photons, they should be placed right at the place where the cavity field is maximum, which is very challenging. How is the positional uncertainty overcome? Recently, the peculiar behaviors of electromagnetic (EM) fields inside zero-index metamaterial (ZIM) in which permittivity and/or permeability are zero have aroused considerable interest. In ZIMs the propagating phase everywhere is the same and the effective wavelength is infinite, which strongly changes the scattering and mode properties of the EM waves. In addition to the above characteristics, the fields in ZIM could be homogeneous as required by Maxwell equations. While the special properties of ZIMs are investigated, the fabrication of ZIMs is widely studied. It is found that a two dimensional (2D) photonic crystal consisting of a square lattice of dielectric rods with accidental degeneracy can behave as a loss-free ZIM at Dirac point. To overcome the positional uncertainty, in this paper we propose a cavity filled with effective zero-index metamaterial (ZIM). When the ZIM is embedded in a cavity, the enhanced homogeneous fields can occur under the resonance condition. Finally, experimental verification in microwave regime is conducted. In the experiments, we utilize a composite right/left-handed transmission line with deep subwavelength unit cell to mimic a ZIM and use a metallic split ring resonator (SRR) as a magnetic resonator whose resonance frequency is determined by structural parameters. The experimental results that in general agree well with the simulations demonstrate nearly position-independent normal-mode splitting.
      Corresponding author: Xu Xiao-Hu, bigbrowm@163.com;sxxymiao@126.com ; Miao Xiang-Yang, bigbrowm@163.com;sxxymiao@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11404204, 51607119, 11674247).
    [1]

    Veselago V G 1968 Sov. Phys. Usp. 10 509

    [2]

    Pendry J B, Holden A J, Stewart W J 1996 Phys. Rev. Lett. 76 4773

    [3]

    Shelby R A, Smith D R, Schultz S 2001 Science 292 77

    [4]

    Monticone F, Alu A 2014 Chin. Phys. B 23 047809

    [5]

    Xi S, Chen H, Jiang T, Ran L, Huang fu J, Wu B I, Kong J, Chen M 2009 Phys. Rev. Lett. 103 194801

    [6]

    Ran J, Zhang Y, Chen X, Fang K, Zhao J, Sun Y, Chen H 2015 Sci. Rep. 5 11659

    [7]

    Pendry J B, Holden A J, Robbins D J 1999 IEEE Trans. Microwave Theory Tech. 47 2075

    [8]

    Hao J M, Yan W, Qiu M 2010 Appl. Phys. Lett. 96 101109

    [9]

    Nguyen V C, Chen L, Halterman K 2010 Phys. Rev. Lett. 105 233908

    [10]

    Silveirinha M, Engheta N 2006 Phys. Rev. Lett. 97 157403

    [11]

    Edwards B, Al A, Young M E, Silveirinha M, Engheta N 2008 Phys. Rev. Lett. 100 033903

    [12]

    Liu R P, Cheng Q, Hand T, Mock J J, Cui T J, Cummer S A, Smith D R 2008 Phys. Rev. Lett. 100 023903

    [13]

    Feng S M, Halterman K 2012 Phys. Rev. B 86 165103

    [14]

    Sun L, Feng S M, Yang X D 2012 Appl. Phys. Lett. 101 241101

    [15]

    Enoch S, Tayeb G, Sabouroux P, Gurin N, Vincent P 2002 Phys. Rev. Lett. 89 213902

    [16]

    Naika G V, Liu J J, Kildisheva A V, Shalaeva V M, Boltassevaa A 2012 PNAS 109 8834

    [17]

    Subramania G, Fischer A J, Luk T S 2012 Appl. Phys. Lett. 101 241107

    [18]

    Huang X Q, Lai Y, Hang Z H, Zheng H H, Chan C T 2011 Nat. Mater. 10 582

    [19]

    Jiang H T, Wang Z L, Sun Y, Li Y H, Zhang Y W, Li H Q, Chen H 2011 J. Appl. Phys. 109 073113

    [20]

    Weisbuch C, Nishioka M, Ishikawa A, Arakawa Y 1992 Phys. Rev. Lett. 69 3314

    [21]

    Boca A, Miller R, Birnbaum K M, Boozer A D, McKeever J, Kimble H J 2004 Phys. Rev. Lett. 93 233603

    [22]

    Tischler J R, Bradley M S, Bulovic V, Song J H, Nurmikko A 2005 Phys. Rev. Lett. 95 036401

    [23]

    Vujic D, John S 2005 Phys. Rev. A 72 013807

    [24]

    Gersen H, Karle T J, Engelen R J P, Bogaerts W, Korterik J P, Hulst N F V, Krauss T F, Kuipers L 2005 Phys. Rev. Lett. 94 073903

    [25]

    Khitrova G, Gibbs H M, Jahnke F, Kira M, Koch S W 1999 Rev. Mod. Phys. 71 1591

    [26]

    Berman P R 1994 Cavity Quantum Electrodynamics (Boston: Academic) pp377-390

    [27]

    Yoshie T, Scherer A, Hendrickson J, Khitrova G, Gibbs H M, Rupper G, Ell C, Shchekin O B, Deppe D G 2004 Nature 432 200

    [28]

    Aoki K, Guimard D, Nishioka M, Nomura M, Iwamoto S, Arakawa Y 2008 Nat. Photon. 2 688

    [29]

    Raimond J M, Brune M, Haroche S 2001 Rev. Mod. Phys. 73 565

    [30]

    Blais A, Huang R S, Wallraff A, Girvin S M, Schoelkopf R J 2004 Phys. Rev. A 69 062320

    [31]

    Holmstrm P, Thyln L, Bratkovsky A 2010 J. Appl. Phys. 107 064307

    [32]

    Gil I, Bonache J, Garcia J G, Martin F 2006 IEEE Trans. Microwave Theory Tech. 54 2665

    [33]

    Zhang L W, Zhang Y W, Yang Y P, Li H Q, Chen H, Zhu S Y 2008 Phys. Rev. E 78 035601

  • [1]

    Veselago V G 1968 Sov. Phys. Usp. 10 509

    [2]

    Pendry J B, Holden A J, Stewart W J 1996 Phys. Rev. Lett. 76 4773

    [3]

    Shelby R A, Smith D R, Schultz S 2001 Science 292 77

    [4]

    Monticone F, Alu A 2014 Chin. Phys. B 23 047809

    [5]

    Xi S, Chen H, Jiang T, Ran L, Huang fu J, Wu B I, Kong J, Chen M 2009 Phys. Rev. Lett. 103 194801

    [6]

    Ran J, Zhang Y, Chen X, Fang K, Zhao J, Sun Y, Chen H 2015 Sci. Rep. 5 11659

    [7]

    Pendry J B, Holden A J, Robbins D J 1999 IEEE Trans. Microwave Theory Tech. 47 2075

    [8]

    Hao J M, Yan W, Qiu M 2010 Appl. Phys. Lett. 96 101109

    [9]

    Nguyen V C, Chen L, Halterman K 2010 Phys. Rev. Lett. 105 233908

    [10]

    Silveirinha M, Engheta N 2006 Phys. Rev. Lett. 97 157403

    [11]

    Edwards B, Al A, Young M E, Silveirinha M, Engheta N 2008 Phys. Rev. Lett. 100 033903

    [12]

    Liu R P, Cheng Q, Hand T, Mock J J, Cui T J, Cummer S A, Smith D R 2008 Phys. Rev. Lett. 100 023903

    [13]

    Feng S M, Halterman K 2012 Phys. Rev. B 86 165103

    [14]

    Sun L, Feng S M, Yang X D 2012 Appl. Phys. Lett. 101 241101

    [15]

    Enoch S, Tayeb G, Sabouroux P, Gurin N, Vincent P 2002 Phys. Rev. Lett. 89 213902

    [16]

    Naika G V, Liu J J, Kildisheva A V, Shalaeva V M, Boltassevaa A 2012 PNAS 109 8834

    [17]

    Subramania G, Fischer A J, Luk T S 2012 Appl. Phys. Lett. 101 241107

    [18]

    Huang X Q, Lai Y, Hang Z H, Zheng H H, Chan C T 2011 Nat. Mater. 10 582

    [19]

    Jiang H T, Wang Z L, Sun Y, Li Y H, Zhang Y W, Li H Q, Chen H 2011 J. Appl. Phys. 109 073113

    [20]

    Weisbuch C, Nishioka M, Ishikawa A, Arakawa Y 1992 Phys. Rev. Lett. 69 3314

    [21]

    Boca A, Miller R, Birnbaum K M, Boozer A D, McKeever J, Kimble H J 2004 Phys. Rev. Lett. 93 233603

    [22]

    Tischler J R, Bradley M S, Bulovic V, Song J H, Nurmikko A 2005 Phys. Rev. Lett. 95 036401

    [23]

    Vujic D, John S 2005 Phys. Rev. A 72 013807

    [24]

    Gersen H, Karle T J, Engelen R J P, Bogaerts W, Korterik J P, Hulst N F V, Krauss T F, Kuipers L 2005 Phys. Rev. Lett. 94 073903

    [25]

    Khitrova G, Gibbs H M, Jahnke F, Kira M, Koch S W 1999 Rev. Mod. Phys. 71 1591

    [26]

    Berman P R 1994 Cavity Quantum Electrodynamics (Boston: Academic) pp377-390

    [27]

    Yoshie T, Scherer A, Hendrickson J, Khitrova G, Gibbs H M, Rupper G, Ell C, Shchekin O B, Deppe D G 2004 Nature 432 200

    [28]

    Aoki K, Guimard D, Nishioka M, Nomura M, Iwamoto S, Arakawa Y 2008 Nat. Photon. 2 688

    [29]

    Raimond J M, Brune M, Haroche S 2001 Rev. Mod. Phys. 73 565

    [30]

    Blais A, Huang R S, Wallraff A, Girvin S M, Schoelkopf R J 2004 Phys. Rev. A 69 062320

    [31]

    Holmstrm P, Thyln L, Bratkovsky A 2010 J. Appl. Phys. 107 064307

    [32]

    Gil I, Bonache J, Garcia J G, Martin F 2006 IEEE Trans. Microwave Theory Tech. 54 2665

    [33]

    Zhang L W, Zhang Y W, Yang Y P, Li H Q, Chen H, Zhu S Y 2008 Phys. Rev. E 78 035601

  • [1] Li Jin-Fang, He Dong-Shan, Wang Yi-Ping. Modulation of topological phase transition and topological quantum state of magnon-photon in one-dimensional coupled cavity lattices. Acta Physica Sinica, 2024, 73(4): 044203. doi: 10.7498/aps.73.20231519
    [2] Duan Xue-Ke, Ren Juan-Juan, Hao He, Zhang Qi, Gong Qi-Huang, Gu Ying. Interactions between photons and excitons in micro-nano photonic structures. Acta Physica Sinica, 2019, 68(14): 144201. doi: 10.7498/aps.68.20190269
    [3] Zhao Yan-Hui, Qian Chen-Jiang, Tang Jing, Sun Yue, Peng Kai, Xu Xiu-Lai. Effects of location and polarization of a dipole source on the excitation of a photonic crystal H1 cavity. Acta Physica Sinica, 2016, 65(13): 134206. doi: 10.7498/aps.65.134206
    [4] Gong Jian, Zhang Li-Wei, Chen Liang, Qiao Wen-Tao, Wang Jian. Negative refraction and bulk polariton properties of the graphene-based hyperbolic metamaterials. Acta Physica Sinica, 2015, 64(6): 067301. doi: 10.7498/aps.64.067301
    [5] Kang Yong-Qiang, Gao Peng, Liu Hong-Mei, Zhang Chun-Min, Shi Yun-Long. Resonant modes in photonic double quantum well structures with single-negative materials. Acta Physica Sinica, 2015, 64(6): 064207. doi: 10.7498/aps.64.064207
    [6] Lu Dao-Ming. Tripartite entanglement properties of coupled three atoms in cavity quantum electrodynamics. Acta Physica Sinica, 2014, 63(6): 060301. doi: 10.7498/aps.63.060301
    [7] Wu Ji-Jiang, Gao Jin-Xia. Photonic bandgap properties of one-dimensional superconducting photonic crystals containing metamaterials. Acta Physica Sinica, 2013, 62(12): 124102. doi: 10.7498/aps.62.124102
    [8] Liu Li-Xiang, Dong Li-Juan, Liu Yan-Hong, Yang Cheng-Quan, Shi Yun-Long. Properties of photonic quantum well structures containing left-handed materials. Acta Physica Sinica, 2012, 61(13): 134210. doi: 10.7498/aps.61.134210
    [9] Li Wen-Sheng, Luo Shi-Jun, Huang Hai-Ming, Zhang Qin, Shi Du-Fang. Polarization properties of one-dimensional photonic crystal tunneling mode containing metamaterials. Acta Physica Sinica, 2012, 61(10): 104101. doi: 10.7498/aps.61.104101
    [10] Tong Xing, Han Kui, Shen Xiao-Peng, Wu Qiong-Hua, Zhou Fei, Ge Yang, Hu Xiao-Juan. Equal intensity polarization-independent beam splitter based on photonic crystal self-collimation ring resonator. Acta Physica Sinica, 2011, 60(6): 064217. doi: 10.7498/aps.60.064217
    [11] Zhou Fei, Yang Yi-Biao, Liang Jiu-Qing, Fei Hong-Ming. Resonance tunneling through photonic double quantum well system. Acta Physica Sinica, 2011, 60(7): 074225. doi: 10.7498/aps.60.074225
    [12] Li Yan, Fu Hai-Wei, Shao Min, Li Xiao-Li. Temperature characteristic of photonic crystals resonant cavitycomposed of GaAs pillars with graphite lattice. Acta Physica Sinica, 2011, 60(7): 074219. doi: 10.7498/aps.60.074219
    [13] Chen Wei, Xing Ming-Xin, Ren Gang, Wang Ke, Du Xiao-Yu, Zhang Ye-Jin, Zheng Wan-Hua. Design of high polarization and single-mode photonic crystal laser. Acta Physica Sinica, 2009, 58(6): 3955-3960. doi: 10.7498/aps.58.3955
    [14] Lu Hui, Tian Hui-Ping, Li Chang-Hong, Ji Yue-Feng. Research on new type of slow light structure based on 2D photonic crystal coupled cavity waveguide. Acta Physica Sinica, 2009, 58(3): 2049-2055. doi: 10.7498/aps.58.2049
    [15] Liu Yang, Gong Hua-Rong, Wei Yan-Yu, Gong Yu-Bin, Wang Wen-Xiang, Liao Fu-Jiang. An effective method for suppressing the mode competition in a rectangular cavity loaded with photonic crystals. Acta Physica Sinica, 2009, 58(11): 7845-7851. doi: 10.7498/aps.58.7845
    [16] Du Xiao-Yu, Zheng Wan-Hua, Ren Gang, Wang Ke, Xing Ming-Xin, Chen Liang-Hui. Slow wave effect of 2-D photonic crystal coupled cavity array. Acta Physica Sinica, 2008, 57(1): 571-575. doi: 10.7498/aps.57.571
    [17] Dong Hai-Xia, Jiang Hai-Tao, Yang Cheng-Quan, Shi Yun-Long. Properties of impurity band in one-dimensional photonic crystal coupled-resonator containing defect layers with negative refractive index. Acta Physica Sinica, 2006, 55(6): 2777-2780. doi: 10.7498/aps.55.2777
    [18] Wang Su-Ling, Zhang Ye-Wen, He Li, Li Hong-Qiang, Chen Hong. Microwave transmission properties of tunable one-dimensional metamaterials. Acta Physica Sinica, 2006, 55(1): 226-229. doi: 10.7498/aps.55.226
    [19] Xu Xing-Sheng, Xiong Zhi-Gang, Sun Zeng-Hui, Du Wei, Lu Lin, Chen Hong-Da, Jin Ai-Zi, Zhang Dao-Zhong. Optical properties of semiconductor quantum-well material using photonic crystal fabricated by micro-fabrication machine. Acta Physica Sinica, 2006, 55(3): 1248-1252. doi: 10.7498/aps.55.1248
    [20] Feng Li-Juan, Jiang Hai-Tao, Li Hong-Qiang, Zhang Ye-Wen, Chen Hong. The dispersive characteristics of impurity bands in coupled-resonator optical waveguides of photonic crystals. Acta Physica Sinica, 2005, 54(5): 2102-2105. doi: 10.7498/aps.54.2102
Metrics
  • Abstract views:  6139
  • PDF Downloads:  232
  • Cited By: 0
Publishing process
  • Received Date:  21 August 2017
  • Accepted Date:  16 September 2017
  • Published Online:  20 January 2019

/

返回文章
返回