Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Extinction properties of gold nanorod complexes

Huang Yun-Huan Li Pu

Citation:

Extinction properties of gold nanorod complexes

Huang Yun-Huan, Li Pu
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Plasmonics with subwavelength characteristics can break the diffraction limit of light and be used to produce the sub-wavelength optoelectronic device, thus it has aroused great interest for decades. Local surface plasmon resonance of metal nanoparticles has become one of the research hotspots due to the fact it can produce extinction and near-field enhancement effect. How to achieve controllable plasmon line shape and generate strong electromagnetic field enhancement is of great significance for improving the sensing performance, nonlinear effect and surface enhanced Raman factor of metallic nanostructures. The optical properties of plasmonic oligomer clusters composed of normal and L-shaped nanrod dimers are investigated by using the finite-difference time-domain method in this paper. There are two energy modes for an L-shaped nanorod due to its shaped anisotropy, where plasmons oscillate along the arms of the L-shaped nanorod or oscillate over the whole length of the L-shaped nanorod. Therefore, two bonding resonances appear in the spectrum of an L-shaped nanorod dimer, while only one bonding resonance exists for normal nanorod dimer. When a normal nanorod dimer and an L-shaped nanorod dimer are aligned together to form a quadrumer, the three bonding resonances can be excited simultaneously and radiative damping can be suppressed effectively around the dip spectral positions. It is shown that the optical responses of quadrumer can be strongly tuned by manipulating the geometry parameters. For example, the coupling between the two dimers can be modified by adjusting the separation, and the three resonances shift toward higher energies with the increasing of the separation. In addition, the optical responses of individual nanorod depend on the corresponding arm length. As a result, the three resonances of the quadrumer can also be well tuned by adjusting the arm length. Comparing the variation of resonance peak positions between L-shaped nanorod dimer and normal nanorod dimer, we can more intuitively understand spectral lineshape variation of quadrumer. These results can be used for guiding the design of nano-photonic devices for plasmonic oligomer clusters and also for developing the application of surface-enhanced Raman scattering and biological sensing.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61205142, 51404165).
    [1]

    Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824

    [2]

    Kelly K L, Coronado E, Zhao L L, Schatz G C 2002 J. Phys. Chem. B 34 668

    [3]

    Ding P, Wang J Q, He J N, Fan C Z, Cai G W, Liang E J 2013 Chin. Phys.B 22 127802

    [4]

    Liu S D, Cheng M T 2010 J. Appl. Phys. 108 034313

    [5]

    Shi X Z, Shen C M, Wang D K, Li C, Tian Y, Xu Z C, Wang C M, Gao H J 2011 Chin. Phys. B 20 076103

    [6]

    Shopa M, Kolwas K, Derkachova A, Derkachov G 2010 Opto-Electron. Rev. 18 421

    [7]

    Liu S D, Yang Z, Liu R P, Li X Y 2012 Appl. Phys. Lett. 100 203119

    [8]

    Liu S D, Yang Z, Liu R P, Li X Y 2012 ACS Nano 6 6260

    [9]

    Liu S D, Zhang M J, Wang W J, Wang Y C 2013 Appl. Phys. Lett. 102 133105

    [10]

    Kessentini S, Barchiesi D, D'Andrea C, Toma A, Guillot N, Di Fabrizio E, Fazio B, Marago O M, Gucciardi P G, de la Chapelle M L 2014 J. Phys. Chem. C 118 3209

    [11]

    Yang Y P, Ranjan S, Zhang W L 2014 Chin. Phys. B 23 128702

    [12]

    Shao W J, Li W M, Xu X L, Wang H J, Wu Y Z, Yu J 2014 Chin. Phys. B 23 117301

    [13]

    Liu S D, Yang Z, Liu R P, Li X Y 2011 Opt. Express 19 15363

    [14]

    He M D, Ma W G, Wang X J 2013 Chin. Phys. B 22 114201

    [15]

    Huo Y Y, Jia T Q, Zhang Y, Zhao H, Zhang S A, Feng D H, Sun Z R 2014 Appl. Phys. Lett. 104 113104

    [16]

    Jiang W, Kim B Y S, Rutka J T, Chan W C W 2008 Nat Nanotechnol. 3 145

    [17]

    Luk'yanchuk B, Zheludev N I, Maier S A, Halas N J, Nordlander P, Giessen H, Chong C T 2010 Nature Mater. 9 707

    [18]

    Lovera A, Gallinet B, Nordlander P, Martin O J 2013 ACS Nano 7 4527

    [19]

    Zhao H J 2012 Chin. Phys. B 21 087104

    [20]

    Yuan J, Kan Q, Geng Z X, Xie Y Y, Wang C X, Chen H D 2014 Chin. Phys. B 23 084201

    [21]

    Zhang Z, Liu Q, Qi Z M 2013 Acta Phys. Sin. 62 060703 (in Chinese) [张喆, 柳倩, 祁志美 2013 物理学报 62 060703]

    [22]

    Omidi M, Amoabediny G, Yazdian F, Habibi-Rezaei M 2015 Chin. Phys. Lett. 32 018701

    [23]

    Liu S D, Yang Z, Liu R P, Li X Y 2011 J. Phys. Chem. C 115 24469

    [24]

    Zhou Q, He Y, Abell J, Zhang Z, Zhao Y 2011 J. Phys. Chem. C 115 14131

    [25]

    Wang J Q, Fan C Z, He J N, Ding P, Liang E J, Xue Q Z 2013 Opt. Express 21 2236

    [26]

    Hentschel M, Dregely D, Vogelgesang R, Giessen H, Liu N 2011 ACS Nano 5 2042

    [27]

    Lassiter J B, Sobhani H, Knight M W, Mielczarek W S, Nordlander P, Halas N J 2012 Nano Lett. 12 1058

    [28]

    Rahmani M, Lei D Y, Giannini V, Lukiyanchuk B, Ranjbar M, Liew T Y F, Hong M H, Maier S A 2012 Nano Lett. 12 2101

    [29]

    Wang M, Cao M, Guo Z R, Gu N 2013 J. Phys. Chem. C 117 11713

    [30]

    Canfield B K, Kujala S, Jefimovs K, Turunen J, Kauranen M 2004 Opt. Express 12 5418

    [31]

    Canfield B K, Kujala S, Kauranen M, Jefimovs K, Vallius T, Turunen J 2005 Appl. Phys. Lett. 86 183109

    [32]

    Canfield B K, Kujala S, Kauranen M, Jefimovs K, Vallius T, Turunen J 2005 J. Opt. A: Pure Appl. Opt. 7 110

    [33]

    Sung J, Hicks E M, van Duyne R P, Spears K G 2007 J. Phys. Chem. C 111 10368

    [34]

    Panaro S, Toma A, Zaccaria R P, Chirumamilla M, Saeed A, Razzari L, Das G, Liberale C, de Angelis F, Di Fabrizio E 2013 Microelectron. Eng. 111 91

    [35]

    Husu H, Makitalo J, Laukkanen J, Kuittinen M, Kauranen M 2010 Opt. Express 18 16601

    [36]

    Yang J, Zhang J S 2013 Opt. Express 21 7934

    [37]

    Yang J, Zhang J S 2011 Plasmonics 6 251

    [38]

    Liu J Q, Chen J, Wang D Y, Zhou Y X, Chen Z H, Wang L L 2013 Chin. Phys. Lett. 30 097801

    [39]

    Johnson P B, Christy R W 1972 Phys. Rev. B 6 4370

    [40]

    Friedrich H, Wintgen D 1985 Phys. Rev. A 31 3964

    [41]

    Friedrich H, Wintgen D 1985 Phys. Rev. A 32 3231

  • [1]

    Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824

    [2]

    Kelly K L, Coronado E, Zhao L L, Schatz G C 2002 J. Phys. Chem. B 34 668

    [3]

    Ding P, Wang J Q, He J N, Fan C Z, Cai G W, Liang E J 2013 Chin. Phys.B 22 127802

    [4]

    Liu S D, Cheng M T 2010 J. Appl. Phys. 108 034313

    [5]

    Shi X Z, Shen C M, Wang D K, Li C, Tian Y, Xu Z C, Wang C M, Gao H J 2011 Chin. Phys. B 20 076103

    [6]

    Shopa M, Kolwas K, Derkachova A, Derkachov G 2010 Opto-Electron. Rev. 18 421

    [7]

    Liu S D, Yang Z, Liu R P, Li X Y 2012 Appl. Phys. Lett. 100 203119

    [8]

    Liu S D, Yang Z, Liu R P, Li X Y 2012 ACS Nano 6 6260

    [9]

    Liu S D, Zhang M J, Wang W J, Wang Y C 2013 Appl. Phys. Lett. 102 133105

    [10]

    Kessentini S, Barchiesi D, D'Andrea C, Toma A, Guillot N, Di Fabrizio E, Fazio B, Marago O M, Gucciardi P G, de la Chapelle M L 2014 J. Phys. Chem. C 118 3209

    [11]

    Yang Y P, Ranjan S, Zhang W L 2014 Chin. Phys. B 23 128702

    [12]

    Shao W J, Li W M, Xu X L, Wang H J, Wu Y Z, Yu J 2014 Chin. Phys. B 23 117301

    [13]

    Liu S D, Yang Z, Liu R P, Li X Y 2011 Opt. Express 19 15363

    [14]

    He M D, Ma W G, Wang X J 2013 Chin. Phys. B 22 114201

    [15]

    Huo Y Y, Jia T Q, Zhang Y, Zhao H, Zhang S A, Feng D H, Sun Z R 2014 Appl. Phys. Lett. 104 113104

    [16]

    Jiang W, Kim B Y S, Rutka J T, Chan W C W 2008 Nat Nanotechnol. 3 145

    [17]

    Luk'yanchuk B, Zheludev N I, Maier S A, Halas N J, Nordlander P, Giessen H, Chong C T 2010 Nature Mater. 9 707

    [18]

    Lovera A, Gallinet B, Nordlander P, Martin O J 2013 ACS Nano 7 4527

    [19]

    Zhao H J 2012 Chin. Phys. B 21 087104

    [20]

    Yuan J, Kan Q, Geng Z X, Xie Y Y, Wang C X, Chen H D 2014 Chin. Phys. B 23 084201

    [21]

    Zhang Z, Liu Q, Qi Z M 2013 Acta Phys. Sin. 62 060703 (in Chinese) [张喆, 柳倩, 祁志美 2013 物理学报 62 060703]

    [22]

    Omidi M, Amoabediny G, Yazdian F, Habibi-Rezaei M 2015 Chin. Phys. Lett. 32 018701

    [23]

    Liu S D, Yang Z, Liu R P, Li X Y 2011 J. Phys. Chem. C 115 24469

    [24]

    Zhou Q, He Y, Abell J, Zhang Z, Zhao Y 2011 J. Phys. Chem. C 115 14131

    [25]

    Wang J Q, Fan C Z, He J N, Ding P, Liang E J, Xue Q Z 2013 Opt. Express 21 2236

    [26]

    Hentschel M, Dregely D, Vogelgesang R, Giessen H, Liu N 2011 ACS Nano 5 2042

    [27]

    Lassiter J B, Sobhani H, Knight M W, Mielczarek W S, Nordlander P, Halas N J 2012 Nano Lett. 12 1058

    [28]

    Rahmani M, Lei D Y, Giannini V, Lukiyanchuk B, Ranjbar M, Liew T Y F, Hong M H, Maier S A 2012 Nano Lett. 12 2101

    [29]

    Wang M, Cao M, Guo Z R, Gu N 2013 J. Phys. Chem. C 117 11713

    [30]

    Canfield B K, Kujala S, Jefimovs K, Turunen J, Kauranen M 2004 Opt. Express 12 5418

    [31]

    Canfield B K, Kujala S, Kauranen M, Jefimovs K, Vallius T, Turunen J 2005 Appl. Phys. Lett. 86 183109

    [32]

    Canfield B K, Kujala S, Kauranen M, Jefimovs K, Vallius T, Turunen J 2005 J. Opt. A: Pure Appl. Opt. 7 110

    [33]

    Sung J, Hicks E M, van Duyne R P, Spears K G 2007 J. Phys. Chem. C 111 10368

    [34]

    Panaro S, Toma A, Zaccaria R P, Chirumamilla M, Saeed A, Razzari L, Das G, Liberale C, de Angelis F, Di Fabrizio E 2013 Microelectron. Eng. 111 91

    [35]

    Husu H, Makitalo J, Laukkanen J, Kuittinen M, Kauranen M 2010 Opt. Express 18 16601

    [36]

    Yang J, Zhang J S 2013 Opt. Express 21 7934

    [37]

    Yang J, Zhang J S 2011 Plasmonics 6 251

    [38]

    Liu J Q, Chen J, Wang D Y, Zhou Y X, Chen Z H, Wang L L 2013 Chin. Phys. Lett. 30 097801

    [39]

    Johnson P B, Christy R W 1972 Phys. Rev. B 6 4370

    [40]

    Friedrich H, Wintgen D 1985 Phys. Rev. A 31 3964

    [41]

    Friedrich H, Wintgen D 1985 Phys. Rev. A 32 3231

  • [1] Li Kai, Sun Jie, Du Zai-Fa, Qian Feng-Song, Tang Peng-Hao, Mei Yu, Xu Chen, Yan Qun, Liu Ming, Li Long-Fei, Guo Wei-Ling. Metal thermopile infrared detector with vertical graphene. Acta Physica Sinica, 2023, 72(3): 038101. doi: 10.7498/aps.72.20221564
    [2] Jing Jian-Ying, Liu Kun, Wu Zhang-Yi, Liu Yue-Meng, Jiang Jun-Feng, Xu Tian-Hua, Yan Wei-Cheng, Xiong Yi-Yang, Zhan Xiao-Han, Xiao Lu, Liu Jin-Chang, Liu Tie-Gen. Violet phosphorus-enhanced plug-and-play double-lane fiber optic surface plasmon resonance refractometer. Acta Physica Sinica, 2023, 72(21): 214206. doi: 10.7498/aps.72.20231110
    [3] Ye Gao-Jie, Yin Cheng, Li Si-Yu, Yu Qiang, Wang Xian-Ping, Wu Jian. Surface lattice resonance effect of double-ring array of metallic nano-particles. Acta Physica Sinica, 2023, 72(10): 104201. doi: 10.7498/aps.72.20230199
    [4] Zhang Ming-Ke, Gao Zhen-Wei, Gao Guang-Zhen, Jiang Yu-Hao, Cai Ting-Dong. Simultaneous detection of particle and C2H2 at high temperature using tunable diode laser extinction spectroscopy. Acta Physica Sinica, 2022, 71(19): 193301. doi: 10.7498/aps.71.20220866
    [5] Diffraction-induced quadrupolar lattice plasmon modes of high-quality factors for silver nanoparticle arrays. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211629
    [6] Hu Bao-Jing, Huang Ming, Li Peng, Yang Jing-Jing. Plasmon-induced transparency based on black phosphorus nanorods hybrid model. Acta Physica Sinica, 2021, 70(4): 044201. doi: 10.7498/aps.70.20201331
    [7] Hu Bao-Jing, Huang Ming, Li Peng, Yang Jing-Jing. Multiband plasmon-induced transparency based on nanometals-graphene hybrid model. Acta Physica Sinica, 2020, 69(17): 174201. doi: 10.7498/aps.69.20200200
    [8] Hu Bao-Jing, Huang Ming, Li Peng, Yang Cheng-Fu. Multiband plasmon-induced transparency based on silver nanorods and nanodisk hybrid model. Acta Physica Sinica, 2020, 69(13): 134202. doi: 10.7498/aps.69.20200093
    [9] Zhang Xing-Fang, Liu Feng-Shou, Yan Xin, Liang Lan-Ju, Wei De-Quan. Double Fano resonance in gold nanotube embedded with a concentric elliptical cylinder. Acta Physica Sinica, 2019, 68(6): 067301. doi: 10.7498/aps.68.20182249
    [10] Li Ai-Yun, Zhang Xing-Fang, Liu Feng-Shou, Yan Xin, Liang Lan-Ju. Fano resonances in symmetric gold nanorod trimers. Acta Physica Sinica, 2019, 68(19): 197801. doi: 10.7498/aps.68.20190978
    [11] Feng Shi-Liang, Wang Jing-Yu, Chen Shu, Meng Ling-Yan, Shen Shao-Xin, Yang Zhi-Lin. Surface plasmon resonance “hot spots” and near-field enhanced spectroscopy at interfaces. Acta Physica Sinica, 2019, 68(14): 147801. doi: 10.7498/aps.68.20190305
    [12] Zhu Xu-Peng, Shi Hui-Min, Zhang Shi, Chen Zhi-Quan, Zheng Meng-Jie, Wang Ya-Si, Xue Shu-Wen, Zhang Jun, Duan Hui-Gao. Review on surface plasmonic coupling systems and their applications in spectra enhancement. Acta Physica Sinica, 2019, 68(14): 147304. doi: 10.7498/aps.68.20190782
    [13] Yu Hai-Tong, Liu Dong, Yang Zhen, Duan Yuan-Yuan. Surface structure for manipulating the near-field spectral radiative transfer of thermophotovoltaics. Acta Physica Sinica, 2018, 67(2): 024209. doi: 10.7498/aps.67.20171531
    [14] Jiang Hang, Zhou Yu-Rong, Liu Feng-Zhen, Zhou Yu-Qin. Effect of annealing treatment on characteristics of surface plasmon resonance for indium tin oxide. Acta Physica Sinica, 2018, 67(17): 177802. doi: 10.7498/aps.67.20180435
    [15] Liu Jian-Xiao, Zhang Jun-Liang, Su Ming-Min. Finite-difference time domain method for the analysis of radar scattering characteristic of metal target coated with anisotropic ferrite. Acta Physica Sinica, 2014, 63(13): 137501. doi: 10.7498/aps.63.137501
    [16] Zhang Zhi-Dong, Gao Si-Min, Wang Hui, Wang Hong-Yan. Resonance mode of an equilateral triangle with triangle notch. Acta Physica Sinica, 2014, 63(12): 127301. doi: 10.7498/aps.63.127301
    [17] Wang Yue, Liu Li-Wei, Hu Si-Yi, Li Qi-Yang, Sun Zhen-Hao, Miao Xin-Hui, Yang Xiao-Chuan, Zhang Xi-He. Simulation study based on the COMSOL Mutiphysics to the surface plasmon resonance of Cu2S quantum dots. Acta Physica Sinica, 2013, 62(19): 197803. doi: 10.7498/aps.62.197803
    [18] Ren Xin-Cheng, Guo Li-Xin, Jiao Yong-Chang. Investigation of electromagnetic scattering interaction between the column with rectangular cross-section and rough land surface covered with snow using finite difference time domain method. Acta Physica Sinica, 2012, 61(14): 144101. doi: 10.7498/aps.61.144101
    [19] Cong Chao, Wu Da-Jian, Liu Xiao-Jun, Li Bo. Study on the localized surface plasmon resonance properties of bimetallic gold and silver three-layered nanotubes. Acta Physica Sinica, 2012, 61(3): 037301. doi: 10.7498/aps.61.037301
    [20] Cong Chao, Wu Da-Jian, Liu Xiao-Jun. Localized surface plasmon resonance propertiesof elliptical gold nanotubes. Acta Physica Sinica, 2011, 60(4): 046102. doi: 10.7498/aps.60.046102
Metrics
  • Abstract views:  8049
  • PDF Downloads:  274
  • Cited By: 0
Publishing process
  • Received Date:  24 March 2015
  • Accepted Date:  21 June 2015
  • Published Online:  05 October 2015

/

返回文章
返回