Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Violet phosphorus-enhanced plug-and-play double-lane fiber optic surface plasmon resonance refractometer

Jing Jian-Ying Liu Kun Wu Zhang-Yi Liu Yue-Meng Jiang Jun-Feng Xu Tian-Hua Yan Wei-Cheng Xiong Yi-Yang Zhan Xiao-Han Xiao Lu Liu Jin-Chang Liu Tie-Gen

Jing Jian-Ying, Liu Kun, Wu Zhang-Yi, Liu Yue-Meng, Jiang Jun-Feng, Xu Tian-Hua, Yan Wei-Cheng, Xiong Yi-Yang, Zhan Xiao-Han, Xiao Lu, Liu Jin-Chang, Liu Tie-Gen. Violet phosphorus-enhanced plug-and-play double-lane fiber optic surface plasmon resonance refractometer. Acta Phys. Sin., 2023, 72(21): 214206. doi: 10.7498/aps.72.20231110
Citation: Jing Jian-Ying, Liu Kun, Wu Zhang-Yi, Liu Yue-Meng, Jiang Jun-Feng, Xu Tian-Hua, Yan Wei-Cheng, Xiong Yi-Yang, Zhan Xiao-Han, Xiao Lu, Liu Jin-Chang, Liu Tie-Gen. Violet phosphorus-enhanced plug-and-play double-lane fiber optic surface plasmon resonance refractometer. Acta Phys. Sin., 2023, 72(21): 214206. doi: 10.7498/aps.72.20231110

Violet phosphorus-enhanced plug-and-play double-lane fiber optic surface plasmon resonance refractometer

Jing Jian-Ying, Liu Kun, Wu Zhang-Yi, Liu Yue-Meng, Jiang Jun-Feng, Xu Tian-Hua, Yan Wei-Cheng, Xiong Yi-Yang, Zhan Xiao-Han, Xiao Lu, Liu Jin-Chang, Liu Tie-Gen
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • The fiber optic surface plasmon resonance (SPR) technologies can directly detect the change of the refractive index on the surface of the sensor, caused by the interaction of biochemical molecules. Fiber optic SPR technologies have advantages of small size, low cost, no labeling, high sensitivity, and are easy to realize the miniaturization, multi-parameter, real-time and in-situ detection. Two types of probe-type fiber optic SPR refractometers are constructed based on the novel two-dimensional nanomaterial, i.e., violet phosphorus (VP), the mature fabrication and characterization technologies. The fabrication processes of the fiber optic SPR refractometers are first introduced, and then the feasibility of the fabrication processes is verified via multiple characterization methods. In terms of the signal demodulation, the noise of the resonance spectrum is suppressed by the variational mode decomposition algorithm, and the resonance wavelength is interrogated and monitored in real time by the centroid method. The refractive index sensing performances of the near-field enhanced fiber optic SPR refractometers coated with different layers of VP are investigated. With the increase of the VP layer number, the resonance spectrum exhibits redshift and broadening and the sensitivity is enhanced. The refractive index sensing performance of the nearly guided wave fiber optic SPR refractometer is also investigated. In the low refractive index range of 1.33-1.34 corresponding to the refractive index of the low-concentration biological solution, the sensitivity and the figure of merit of the near-field enhanced fiber optic SPR refractometer with the sensing structure of fiber core/VP dielectric layer/Au layer/sample layer reach to 2335.64 nm/RIU and 24.15 RIU–1, respectively, which are 1.31 times and 1.25 times higher than the counterparts of the single Au layer fiber optic SPR refractometer, respectively. The sensitivity and the figure of merit of the nearly guided wave fiber optic SPR refractometer with the sensing structure of fiber core/Au layer/VP dielectric layer/sample layer can reach to 2802.06 nm/RIU and 22.53 RIU–1, respectively, which are 1.57 times and 1.16 times higher than the counterparts of the single Au layer fiber optic SPR refractometer. Finally, the near-field enhanced SPR and the nearly guided wave SPR are integrated into a single fiber probe to achieve the double-lane sensing. The fiber optic SPR refractometers developed in this study can realize the high-sensitivity, plug-and-play and double-lane detection of the combination of surface refractive index and volume refractive index. The probe-type refractometer also provides a new idea for detecting multi-type protein molecules and heavy metal ions in the biochemical field.
      Corresponding author: Liu Kun, beiyangkl@tju.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61922061, 61775161, 61735011) and the Tianjin Science Fund for Distinguished Young Scholars, China (Grant No. 19JCJQJC61400).

    表面等离激元共振(surface plasmon resonance, SPR)传感技术利用金属层与介质层交界面处自由电子与光子相互作用形成的电磁模感知外界参量变化[13]. 依托光纤基底激发SPR即可构建光纤SPR传感器, 其基本传感结构为光纤/金属层/样品层[4]. 当光纤中的光入射至金属层下表面时, 金属层表面自由电子发生集体振荡形成表面等离激元(surface plasmons, SPs)[5]. 当入射光产生的倏逝场横向波矢与SPs横向波矢相等时, 入射光中的能量大部分耦合至SPs中并激发表面等离极化激元(surface plasmon polaritons, SPPs), 传感器传输光谱中出现共振谷[6]. 光纤SPR传感器主要应用于生物量(如蛋白质[7]、核酸[8]、细胞[9]等)、化学量(如重金属离子[10]、食品添加剂[11]等)和物理量(如温度[12]、湿度[13])等方面的检测. 光纤SPR传感器以其体积小、成本低、灵敏度高、免标记、可实现实时在线、多参量、即插即用式检测的优势在生物医学、环境监测和食品安全等领域具有广阔应用前景[14]. 在光纤SPR传感器表面化学偶联特定类型的敏感膜层, 将传感器浸入液相待测样本中, 待测量与敏感膜层的相互作用会改变传感器表面折射率并引起传感器共振光谱红移或蓝移, 根据共振光谱共振波长移动量可反演待测量浓度、温度等参数指标. 因此, 光纤SPR传感器本质上检测的是传感器表面折射率和传感器周围体折射率的结合, 该类型传感器可视为折射率计[15].

    随着检测需求的不断增大, 光纤SPR增敏方法开始受到越来越多的关注. 光纤SPR的灵敏度主要与SPPs电场强度呈正相关[16]. 本文利用新型二维纳米材料紫磷(violet phosphorus, VP)[17]实现对光纤SPR的灵敏度提升. 紫磷是磷的一种同素异形体, 相比于黑磷, 紫磷的热分解温度(512 ℃)高出黑磷(460 ℃) 52 ℃, 紫磷是目前发现的磷的最稳定的同素异形体, 且容易被剥离为单层, 单层紫磷也称为紫磷烯. 此外, 紫磷的理论计算载流子迁移率[18](1307 cm2·V–1·s–1)明显高于黑磷[19](1100 cm2·V–1·s–1). 将紫磷电介质层引入光纤SPR中, 基于紫磷良好的稳定性和高载流子迁移率, 可以有效提升光纤SPR传感性能.

    本文设计了两种探针式光纤SPR折射率计, 首先介绍了折射率计的制备工艺与表征方法, 然后介绍了折射率计检测信号的解调装置与解调算法, 开展了两种折射率计的传感实验. 最后, 在一个光纤探针中开发两个传感区分别激发近场增强型SPR和近导波型SPR, 实现了双通道折射率传感.

    在单金属层光纤SPR传感器中引入高/复折射率电介质层, 基于电介质层高载流子浓度及高载流子迁移率特性, 在入射光光场能量作用下电介质层与金属层之间的剧烈电子交换能够形成局域电场增强进而提升金属层表面电场强度, 提升传感器灵敏度[16].

    本文选用紫磷层和金层分别作为电介质层和金属层, 构建了两种灵敏度增强型光纤SPR传感器. 如图1(a)所示, 在近场增强型光纤SPR传感器中, 金层与紫磷层之间的局域场增强穿过金层产生一定损耗后增大金层上表面电场, 因此该类型传感器灵敏度略高于单金属层光纤SPR传感器. 同时, 该类型传感器中SPPs电场得到增强后其直接沿着金层上表面传播距离增大, 因此该类型传感器半峰全宽(full width at half-maximum, FWHM)较窄. 此外, 基于紫磷的高折射率特性, 紫磷层与光纤纤芯杂化为高折射率基底位于金层下方, 使得该类型共振激发于较高频率处[5], 即共振激发波段相比于单金属层共振激发波段红移不明显.

    图 1 (a)近场增强型和(b)近导波型光纤SPR激发结构示意图\r\nFig. 1. Schematic diagram of the sensing structure of (a) the near-field enhanced fiber SPR and (b) the nearly guided wave fiber SPR.
    图 1  (a)近场增强型和(b)近导波型光纤SPR激发结构示意图
    Fig. 1.  Schematic diagram of the sensing structure of (a) the near-field enhanced fiber SPR and (b) the nearly guided wave fiber SPR.

    图1(b)所示, 在近导波型光纤SPR传感器中, 紫磷层位于金层上方, 紫磷层与金层之间的电子交换直接增强金层上表面电场, 因此该类型传感器灵敏度明显高于单金属层光纤SPR传感器. 然而, 该类型传感器中SPPs在金层上表面传播时, 紫磷层对光的散射作用明显增大SPPs的辐射损耗, 因此该类型传感器半峰全宽展宽较为严重. 此外, 基于紫磷的高折射率特性, 紫磷层与待测物层杂化为高折射率电介质层位于金层上方, 这使得该类型共振激发于较低频率处[5], 即共振激发波段相比于单金属层共振激发波段发生明显红移. 将前述两种共振集中开发于同一传感器中, 即可在不同波段同时激发两个共振谷, 实现双通道传感. 为评估双通道传感可行性, 本文构建了双通道光纤SPR传感器有限元分析模型, 如图2(a)所示, 计算得到的基模损耗光谱如图2(b)所示, 其中损耗谷1和损耗谷2分别为近场增强型和近导波型结构激发, 基模损耗光谱源于SPR效应引起的光场能量损耗, 可代表传感器的共振光谱[5].

    图 2 双通道光纤SPR (a)有限元分析模型和(b)有限元损耗光谱. 模型参数: 纤芯半径rcore = 4.1 μm, 包层半径rcladding = 62.5 μm, 抛磨剩余厚度Dr = 66.6 μm, 金膜厚度50 nm, 紫磷厚度10 nm\r\nFig. 2. (a) Finite element analysis model and (b) the loss spectrum of the double-lane fiber optic SPR. Model parameter: rcore = 4.1 μm, rcladding = 62.5 μm, Dr = 66.6 μm, the thickness of the Au layer and the VP layer is 50 nm and 10 nm, respectively.
    图 2  双通道光纤SPR (a)有限元分析模型和(b)有限元损耗光谱. 模型参数: 纤芯半径rcore = 4.1 μm, 包层半径rcladding = 62.5 μm, 抛磨剩余厚度Dr = 66.6 μm, 金膜厚度50 nm, 紫磷厚度10 nm
    Fig. 2.  (a) Finite element analysis model and (b) the loss spectrum of the double-lane fiber optic SPR. Model parameter: rcore = 4.1 μm, rcladding = 62.5 μm, Dr = 66.6 μm, the thickness of the Au layer and the VP layer is 50 nm and 10 nm, respectively.

    实验选用的多模光纤(纤芯直径600 μm, 塑料包层直径630 μm, 数值孔径0.37)购自北京首量科技股份有限公司; 紫磷纳米片分散液(厚度1层—30层, 片径0.05—1 μm, 浓度0.1 mg/mL)购自南京二维纳米科技有限公司(www.mukenano.com); 壳聚糖(Chitosan, CTS, 脱乙酰度≥95%, 黏度<200 mPa·s)、冰醋酸(acetic acid glacial, AAG, 质量分数≥ 99.5%)、聚丙烯酸(poly(acrylic acid), PAA, 平均分子量约2000)均为分析纯试剂, 购自上海阿拉丁生化科技股份有限公司.

    3.2.1   光纤预处理

    1) 光纤裁剪

    利用钨钢光纤切割笔裁剪15 cm光纤, 并用合金雕刻刀去除光纤两端包层, 左端去除包层长度0.5 cm用于连接光纤适配器, 右端去除包层长度约1.5 cm用于制作传感区, 如图3(a)所示.

    图 3 (a)光纤预处理流程示意图; (b)光纤端面研磨; (c)光纤端面金反射镜溅射\r\nFig. 3. (a) Schematic diagram of fiber preprocessing process; (b) the grinding of the end face of the optical fiber; (c) the sputtering of the gold mirror on the fiber end face.
    图 3  (a)光纤预处理流程示意图; (b)光纤端面研磨; (c)光纤端面金反射镜溅射
    Fig. 3.  (a) Schematic diagram of fiber preprocessing process; (b) the grinding of the end face of the optical fiber; (c) the sputtering of the gold mirror on the fiber end face.

    2) 端面研磨

    将光纤固定于透镜光纤研磨机(ultrapol fiber lensing, ULTRATEC Manufacturing, INC. USA)上并保证待研磨端面刚好探出光纤适配器, 如图3(b)所示. 分别使用粒径15 μm (1200目)、3 μm (4000目)和1 μm (8000目)的金刚石研磨砂纸对光纤端面进行粗磨、细磨和精磨. 研磨后光纤传感区纤芯长度约为1.3 cm. 光纤端面研磨各阶段扫描电子显微镜图如图A1所示.

    图 A1 光纤端面研磨各阶段扫描电子显微镜图\r\nFig. A1. Scanning electron microscopy of the end face of the optical fiber at each step.
    图 A1  光纤端面研磨各阶段扫描电子显微镜图
    Fig. A1.  Scanning electron microscopy of the end face of the optical fiber at each step.

    3) 端面镀金

    将光纤垂直固定于特制卡具上, 利用磁控溅射方法在光纤用于制作传感区的一端端面增覆一层200 nm金膜作为反射镜, 基于该厚度金膜高的光反射率[20]实现对光的反射, 如图3(c)所示. 为防止光纤柱面传感区参与镀膜, 使用贴纸将传感区包覆, 待镀膜完成后再取下.

    3.2.2   近场增强型光纤SPR折射率计制备

    1) 正/负电分散液制备

    称取200 mg壳聚糖粉末溶于40 mL的4%冰醋酸水溶液中, 使用磁力搅拌装置在50 ℃、1000 r/min条件下搅拌30 min, 以使得壳聚糖充分溶解. 另取10 mL 紫磷纳米片分散液加入上述壳聚糖冰醋酸水溶液中, 并利用磁力搅拌装置在25 ℃, 1500 r/min条件下搅拌30 min以使得紫磷充分分散. 为减小紫磷片径与厚度, 利用超声波材料分散器(SM-1000 C, 南京舜玛仪器设备有限公司)对前述紫磷壳聚糖冰醋酸水溶液进行冰浴超声处理, 超声频率20—25 kHz, 超声时间120 min. 超声分散后将溶液转移至离心机中, 在5000 r/min转速条件下离心处理15 min, 离心后取沉淀物之外的清液, 氩气鼓泡处理, 密封冷藏保存, 以避免紫磷化学变性. 壳聚糖由于游离氨基质子化, 在有机酸中形成阳离子并吸附在紫磷纳米片表面, 阳离子之间的静电排斥抑制了紫磷纳米片的团聚且使得紫磷分散液整体呈现带正电特性[21], 如图A2(a)图A3(a)所示.

    图 A2 (a)壳聚糖和(b)聚丙烯酸的傅里叶红外光谱图\r\nFig. A2. Fourier transform infrared spectroscopy of (a) the CTS and (b) the PAA.
    图 A2  (a)壳聚糖和(b)聚丙烯酸的傅里叶红外光谱图
    Fig. A2.  Fourier transform infrared spectroscopy of (a) the CTS and (b) the PAA.
    图 A3 壳聚糖(a)和聚丙烯酸(b)的Zeta电位\r\nFig. A3. Zeta potential of (a) the CTS and (b) the PAA.
    图 A3  壳聚糖(a)和聚丙烯酸(b)的Zeta电位
    Fig. A3.  Zeta potential of (a) the CTS and (b) the PAA.

    称取5 g聚丙烯酸粉末溶于50 mL去离子水中并搅拌均匀, 聚丙烯酸由于羧基的去质子化, 其分散液整体呈现带负电特性[22], 如图A2(b)图A3(b)所示.

    2) 紫磷纳米片静电吸附层层自组装

    步骤1 食人鱼溶液清洗光纤传感区, 将光纤固定于提拉镀膜机升降杆上, 并使得光纤传感区域完全浸入紫磷分散液中, 设置提拉速度为20 μm/s. 将光纤传感区域从紫磷分散液中提拉出来, 之后用去离子水冲洗以去除未结合的紫磷纳米片并用氮气吹干. 由于壳聚糖良好的黏附性、成膜性, 光纤传感区域表面增覆一层带正电的紫磷纳米片.

    步骤2 将光纤传感区域完全浸入聚丙烯酸溶液中, 以相同速度提拉. 之后用去离子水冲洗、氮气吹干. 在静电吸附作用下, 光纤传感区域带负电.

    重复步骤1和步骤2可实现不同层数的紫磷纳米片增覆. 紫磷增覆完成后, 将光纤置于真空手套箱(ZDX1, 卓的仪器设备(上海)有限公司)中氩气氛围下保存备用, 以避免紫磷层化学变性. 紫磷特性表征如图A4所示.

    图 A4 紫磷的(a)拉曼光谱、(b)扫描电子显微镜能谱图和(c) X射线衍射光谱\r\nFig. A4. (a) Raman spectrum, (b) the SEM energy spectrum and (c) the X-ray diffraction spectrum of the VP.
    图 A4  紫磷的(a)拉曼光谱、(b)扫描电子显微镜能谱图和(c) X射线衍射光谱
    Fig. A4.  (a) Raman spectrum, (b) the SEM energy spectrum and (c) the X-ray diffraction spectrum of the VP.

    3) 金膜层增覆

    将增覆有紫磷纳米片的光纤固定于特制卡具上并置于光纤旋转磁控溅射镀膜仪(LN-GX3, 沈阳立宁真空技术研究所)溅射腔中. 设置关键镀膜参数: 氩气通气前溅射腔内真空度1.0×10–4 Pa以下, 氩气通气后溅射腔内真空度保持1.1 Pa, 溅射功率30 W, 此时溅射速率约为10 nm/min. 溅射5 min后取出光纤, 由于同一批内各个光纤传感区位于同心圆中, 各个传感区表面均增覆有约50 nm厚度的金膜.

    近场增强型光纤SPR折射率计制备流程图和传感结构示意图分别如图4(a)图4(b)所示, 紫磷自组装和金膜溅射示意图分别如图4(c)图4(d)所示, 紫磷层/金层分层结构扫描电子显微镜图如图A5(a)所示.

    图 4 (a)近场增强型光纤SPR折射率计制备流程; (b)近场增强光纤SPR折射率计传感结构示意图; (c)紫磷层层自组装; (d)传感区域金层溅射\r\nFig. 4. (a) Fabrication process of the near-field enhanced fiber SPR refractometer; (b) schematic diagram of sensing structure of the near-field enhanced fiber SPR refractometer; (c) the self-assembly of the VP layer; (d) the sputtering of the Au layer on the sensing area.
    图 4  (a)近场增强型光纤SPR折射率计制备流程; (b)近场增强光纤SPR折射率计传感结构示意图; (c)紫磷层层自组装; (d)传感区域金层溅射
    Fig. 4.  (a) Fabrication process of the near-field enhanced fiber SPR refractometer; (b) schematic diagram of sensing structure of the near-field enhanced fiber SPR refractometer; (c) the self-assembly of the VP layer; (d) the sputtering of the Au layer on the sensing area.
    3.2.3   近导波型光纤SPR折射率计制备

    近导波型光纤SPR折射率计制备过程与近场增强型光纤SPR折射率计制备过程类似, 不同之处在于近导波型光纤SPR折射率计中二维纳米材料位于金属层上方, 即紫磷位于金膜上方. 在制作该类型折射率时先在裸光纤传感区域溅射金层, 然后利用层层自组装方法增覆紫磷层. 近导波型光纤SPR折射率计制备流程图和传感结构示意图分别如图5(a)图5(b)所示, 金膜溅射和紫磷自组装示意图分别如图5(c)图5(d)所示, 金层/紫磷层分层结构扫描电子显微镜图如图A5(b)所示.

    图 5 (a)近导波型光纤SPR折射率计制备流程; (b)近导波光纤SPR折射率计传感结构示意图; (c)传感区域金层溅射; (d)紫磷层层自组装\r\nFig. 5. (a) Fabrication process of the nearly guided wave fiber SPR refractometer; (b) schematic diagram of sensing structure of the nearly guided wave fiber SPR refractometer; (c) the sputtering of the Au layer on the sensing area; (d) the self-assembly of the VP layer.
    图 5  (a)近导波型光纤SPR折射率计制备流程; (b)近导波光纤SPR折射率计传感结构示意图; (c)传感区域金层溅射; (d)紫磷层层自组装
    Fig. 5.  (a) Fabrication process of the nearly guided wave fiber SPR refractometer; (b) schematic diagram of sensing structure of the nearly guided wave fiber SPR refractometer; (c) the sputtering of the Au layer on the sensing area; (d) the self-assembly of the VP layer.
    3.3.1   信号解调系统

    光纤SPR折射率计信号解调系统主要由卤钨灯光源(HL-2000-LL, 360—2400 nm, 蔚海光学仪器(上海)有限公司)、光纤SPR折射率计、浸渍提拉镀膜机(SYDC-100, 上海三研科技有限公司)、光谱仪(Maya2000 Pro, 165—1100 nm, 蔚海光学仪器(上海)有限公司)和信号监视器组成, 各部分之间由光纤跳线连接, 如图6所示. 光纤SPR折射率计固定于提拉镀膜机升降杆上, 可实现直接插入样本检测. 光源发出的光经过光纤跳线进入光纤SPR折射率计, 一部分光场能量在传感区域激发SPR效应并发生损耗, 另一部分光经光纤端面金膜反射镜反射回光纤中, 期间还会二次激发SPR效应[23]. 反射回光纤中的光场能量经光纤跳线被光谱仪收集、分析. 监视器实时、在线监测共振光谱信号.

    图 6 光纤SPR折射率计信号解调系统示意图\r\nFig. 6. Schematic diagram of the signal demodulation system for the fiber SPR refractometer.
    图 6  光纤SPR折射率计信号解调系统示意图
    Fig. 6.  Schematic diagram of the signal demodulation system for the fiber SPR refractometer.
    3.3.2   信号解调算法

    共振光谱信号解调主要包括共振光谱降噪和共振波长提取两个方面. 本文采用变分模态分解算法[24]实现共振光谱噪声抑制, 如图7(a)所示, 共振谷噪声滤除更有利于共振波长的精确提取.

    图 7 (a) 共振光谱信号噪声抑制; (b) 共振波长在线实时监测\r\nFig. 7. (a) Noise suppression for the resonance spectra; (b) the online real-time monitoring of the resonance wavelength.
    图 7  (a) 共振光谱信号噪声抑制; (b) 共振波长在线实时监测
    Fig. 7.  (a) Noise suppression for the resonance spectra; (b) the online real-time monitoring of the resonance wavelength.

    选用质心法[25]实现共振波长实时提取, 如图7(b)所示. 光纤SPR折射率计插入折射率样本后, 待共振光谱稳定即可读取共振波长.

    在对应低浓度液相生物样本折射率范围(1.33—1.34[26])对分别增覆有1层、2层和3层紫磷纳米片的近场增强型光纤SPR折射率计进行折射率传感特性测试, 共振光谱如图8(a)(c)所示. 随着增覆紫磷纳米片层数的增加, 共振光谱整体发生红移和展宽.

    图 8 增覆(a) 1层、(b) 2层和(c) 3层紫磷电介质层的近场增强型光纤SPR折射率计共振光谱; (d)增覆不同紫磷电介质层的光纤SPR折射率计平均灵敏度, 插图为三种光纤SPR折射率计共振波长与折射率点二次拟合曲线\r\nFig. 8. Resonance spectra of the near-field enhanced fiber SPR refractometer with (a) one-layer, (b) two-layer and (c) three-layer VP dielectric layers; (d) average sensitivity of the above three types of fiber SPR refractometers. Inset: binomial fitting curves of resonance wavelengths and refractive index points of three types of fiber SPR refractometers.
    图 8  增覆(a) 1层、(b) 2层和(c) 3层紫磷电介质层的近场增强型光纤SPR折射率计共振光谱; (d)增覆不同紫磷电介质层的光纤SPR折射率计平均灵敏度, 插图为三种光纤SPR折射率计共振波长与折射率点二次拟合曲线
    Fig. 8.  Resonance spectra of the near-field enhanced fiber SPR refractometer with (a) one-layer, (b) two-layer and (c) three-layer VP dielectric layers; (d) average sensitivity of the above three types of fiber SPR refractometers. Inset: binomial fitting curves of resonance wavelengths and refractive index points of three types of fiber SPR refractometers.

    将各共振光谱中共振波长与折射率点进行二次拟合, 取拟合曲线中各折射率点的切线斜率作为折射率计在该折射率点处的灵敏度, 五个折射率点的灵敏度的平均值作为折射率计在该折射率范围内的平均灵敏度Saverage. 三种光纤折射率计的平均灵敏度如图8(d)所示.

    考虑到共振谷左右两侧不完全对称, 共振谷半峰全宽选取原则如下: 以折射率1.3335对应初始共振谷为例, 定义分析波段内共振谷左侧臂最小共振强度为a%, 右侧臂最小共振强度为b%, 共振谷最大共振强度即最低点共振深度为c%, 定义[(a+b)/2–c]/2+c强度处, 即(1)式所示共振强度处共振谷两侧臂波长差为半峰全宽:

    Resonancedepth=a%+b%+2c%4.
    (1)

    折射率计品质因数(figure of merit, FOM)计算为平均灵敏度与初始共振谷半峰全宽的比值:

    FOM=SaverageFWHM.
    (2)

    在该种折射率计中, 紫磷层位于金层外表面, 紫磷增覆层数过多会增加紫磷层脱落的风险, 增覆层数过少则增敏效果不明显. 因此, 本文近导波型光纤SPR折射率计中紫磷增覆层数为2层, 且紫磷层中掺杂了纳米金粉, 纳米金与金膜之间的近场电子耦合[27]能够进一步提升折射率计灵敏度.

    近导波型光纤SPR折射率计共振光谱如图9(a)所示. 由于共振匹配条件发生在更低频率处以及紫磷对SPPs损耗特性的调制作用[5], 该类型折射率计共振光谱相比于单金层光纤SPR折射率计发生明显红移和展宽. 该类型折射率计平均灵敏度如图9(b)所示.

    图 9 增覆2层紫磷电介质层的近导波型光纤SPR折射率计(a)共振光谱和(b)平均灵敏度, 插图: 近导波型光纤 SPR 折射率计共振波长与折射率点二次拟合曲线\r\nFig. 9. (a) Resonance spectra and (b) the average sensitivity of the nearly guided wave fiber SPR refractometer coated with two-layer VP dielectric layer. Inset: the binomial fitting curve of resonance wavelengths and refractive index points.
    图 9  增覆2层紫磷电介质层的近导波型光纤SPR折射率计(a)共振光谱和(b)平均灵敏度, 插图: 近导波型光纤 SPR 折射率计共振波长与折射率点二次拟合曲线
    Fig. 9.  (a) Resonance spectra and (b) the average sensitivity of the nearly guided wave fiber SPR refractometer coated with two-layer VP dielectric layer. Inset: the binomial fitting curve of resonance wavelengths and refractive index points.

    本文中金层增覆为磁控溅射方法, 紫磷电介质层增覆为层层自组装方法, 磁控溅射方法能够保证金层稳定的增覆速率和均匀厚度增覆. 然而, 层层自组装化学控制过程较为复杂, 因此本文对开发的光纤SPR折射率计进行了重复性测试. 利用来源于同一批相同条件下制作的6根近场增强型和近导波型光纤SPR折射率计检测超纯水, 获得的共振谷及共振波长分别如图10(a)图10(b)所示, 共振波长三倍标准差分别为2.60 nm和8.97 nm. 未来研究可通过改善电介质层增覆方法(如利用化学气相沉积)进一步提升器件性能一致性.

    图 10 (a)近场增强型和(b)近导波型光纤SPR折射率计重复性测试\r\nFig. 10. Repeatability of (a) the near-field enhanced fiber SPR refractometer and (b) the nearly guided wave fiber SPR refractometer
    图 10  (a)近场增强型和(b)近导波型光纤SPR折射率计重复性测试
    Fig. 10.  Repeatability of (a) the near-field enhanced fiber SPR refractometer and (b) the nearly guided wave fiber SPR refractometer
    4.4.1   光纤SPR折射率计折射率传感特性对比

    光纤SPR折射率计的灵敏度、半峰全宽、品质因数三个性能指标与折射率选取范围、分析波段、拟合方法、制备工艺、信号解调精度等多种因素密切相关. 本文开发的两种光纤SPR折射率计与传统单层金光纤SPR折射率计[20]在相似折射率测量范围内的折射率传感特性对比如表1所列.

    表 1  折射率传感特性对比
    Table 1.  Comparison of refractive index sensing characteristics.
    传感结构 灵敏度/(nm·RIU–1) 半峰全宽/nm 品质因数/(RIU–1)
    光纤/金/待测物 1787.93 92.43 19.34
    光纤/一层紫磷/金/待测物 1927.61 79.82 24.15
    光纤/两层紫磷/金/待测物 2140.53 93.22 22.96
    光纤/三层紫磷/金/待测物 2335.64 116.94 24.15
    光纤/金/两层紫磷/待测物 2802.06 124.39 22.53
    下载: 导出CSV 
    | 显示表格

    对于近场增强型光纤SPR折射率计, 随着紫磷纳米片增覆层数的增加, 折射率计灵敏度增大, 最高可达2335.64 nm/RIU, 相比于传统单层金构建的光纤SPR折射率计灵敏度提升1.31倍; 半峰全宽增大, 最高达到116.94 nm; 品质因数降低, 最高品质因数为24.15 RIU–1, 是传统单层金光纤SPR折射率计的1.25倍.

    对于近导波型光纤SPR折射率计, 折射率计灵敏度为2802.06 nm/RIU, 半峰全宽为124.39 nm, 品质因数为22.53 RIU–1, 灵敏度和品质因数分别是传统单层金光纤SPR折射率计的1.57倍和1.16倍.

    目前, 光纤SPR传感器尚未形成标准化的制备工艺与检测方法, 因此不同的光纤SPR传感器灵敏度指标会因加工工艺(如膜层成膜质量、溅射靶材纯度等)、折射率测量范围、分析波段、灵敏度计算方法等因素影响而不同. 例如, 传感器在高折射率点处灵敏度明显高于低折射率点处. 表2列出了在相似的折射率测量范围内, 2011—2022年已报道的部分研究工作开发的光纤SPR传感器与本文光纤SPR传感器性能对比. 由表2可知, 本文研究中的光纤SPR传感器性能指标在同类型传感器中处于良好水平, 且探针式的传感结构更易实现即插即用、可抛弃式、具有操作便捷的优势.

    表 2  本文光纤SPR折射率计光谱特性与已报道光纤SPR传感器光谱特性对比
    Table 2.  Comparison between the study in this work and reported works.
    传感结构 折射率测量范围 灵敏度计算方法 灵敏度/(nm·RIU–1) 半峰全宽/nm 品质因数(RIU–1) 年份 参考文献
    多模-单模-多模光纤/金/Ti3C2Tx/待测物 1.3343—1.3658 线性拟合 2180.2 2022 [28]
    侧抛单模光纤/金/Ti3C2Tx/待测物 1.32—1.34 线性拟合 3143 206 15.26 2022 [29]
    锥形多模光纤/铬/金/待测物 1.337—1.359 线性拟合 2266 2021 [30]
    侧抛单模光纤/氟化镁/银/待测物 1.33—1.34 波长差与折射率差的比值 2812.50 35.95 78.23 2021 [31]
    侧抛单模光纤/铜/待测物 1.3330—1.3573 波长差与折射率差的比值 425 2.5 2020 [32]
    侧抛多模光纤/氟化镁/银/待测物 1.333—1.360 线性拟合 1603 47.80 33.54 2019 [33]
    侧抛单模光纤/银/氧化石墨烯/待测物 1.32—1.34 波长差与折射率差的比值 2252.50 60.50 37.22 2019 [34]
    侧抛单模光纤/银/待测物 1.333—1.345 波长差与折射率差的比值 2166.67 25 2019 [35]
    侧抛单模光纤/银/氧化石墨烯/待测物 1.30—1.34 波长差与折射率差的比值 833.33 10 2019 [36]
    多模光纤/金/待测物 1.3345—1.3592 线性拟合 2659.64 2017 [37]
    侧抛单模光纤/银/待测物 1.320—1.340 多项式拟合 1798.0 58.60 30.68 2016 [38]
    多模光纤/化学镀金/待测物 1.333—1.359 线性拟合 2054 108.2 19 2015 [39]
    多模光纤/光刻胶/金/待测物 1.332—1.352 波长差与折射率差的比值 2422 181 2011 [40]
    多模光纤/三层紫磷/金/待测物 1.3335—1.3435 二次拟合 2335.64 116.94 24.15 本文工作
    多模光纤/金/两层紫磷/待测物 1.3352—1.3472 二次拟合 2802.06 124.39 22.53
    下载: 导出CSV 
    | 显示表格
    4.4.2   光纤SPR折射率计应用前景展望

    光纤SPR折射率计光谱信号变化来源于待测量与折射率计表面敏感膜层相互作用引起的面折射率变化. 然而, 敏感膜层的引入一般会使得共振光谱发生红移和展宽[41], 因此不同类型的光纤SPR折射率计适用于不同类型检测场景.

    近场增强型光纤SPR折射率计共振光谱位于较短波段且半峰全宽较窄, 适用于敏感膜层结构复杂、膜厚较厚的应用场景, 如基于多巴胺敏感层实现蛋白分子的夹心免疫检测[42]. 综合考虑灵敏度与品质因数两种性能指标, 增覆两层紫磷烯纳米片的光纤SPR折射率计适用性更广.

    近导波型光纤SPR折射率计灵敏度较高, 但共振光谱位于较长波段且半峰全宽较大, 适用于敏感膜层简单、膜层较薄的检测场景, 如基于壳聚糖薄膜实现重金属离子的检测[43].

    在同一根光纤探针中制作两个传感区, 两传感区分别设计为近场增强型和近导波型结构以实现在不同波段激发SPR效应, 即可在共振光谱中引入两个共振谷进而实现双通道传感. 双通道光纤SPR探针传感结构示意图及实物图如图11所示. 通道一传感结构为光纤纤芯/两层紫磷/金层, 通道二传感结构为光纤纤芯/金层/两层紫磷. 双通道光纤SPR探针对应1.3352—1.3472折射率范围的共振光谱及灵敏度分别如图12(a)图12(b)所示. 共振光谱中两通道激发共振波长间距约125 nm, 因而两共振谷区分明显. 通道二激发共振谷相比于通道一激发共振谷明显展宽, 共振强度较小, 两通道灵敏度与前述对应类型的单一通道折射率计灵敏度类似.

    图 11 双通道光纤SPR折射率计(a)示意图和(b)实物图\r\nFig. 11. (a) Schematic diagram and (b) realistic image of the double-lane optical fiber SPR refractometer.
    图 11  双通道光纤SPR折射率计(a)示意图和(b)实物图
    Fig. 11.  (a) Schematic diagram and (b) realistic image of the double-lane optical fiber SPR refractometer.
    图 12 双通道光纤SPR折射率计(a)共振光谱与(b)平均灵敏度. 插图为双通道光纤SPR折射率计共振波长与折射率点二次拟合曲线\r\nFig. 12. (a) Resonance spectra and (b) the average sensitivity of the double-lane optical fiber SPR refractometer. Inset: the binomial fitting curve of resonance wavelengths and refractive index points.
    图 12  双通道光纤SPR折射率计(a)共振光谱与(b)平均灵敏度. 插图为双通道光纤SPR折射率计共振波长与折射率点二次拟合曲线
    Fig. 12.  (a) Resonance spectra and (b) the average sensitivity of the double-lane optical fiber SPR refractometer. Inset: the binomial fitting curve of resonance wavelengths and refractive index points.

    本文基于新型二维纳米材料紫磷, 结合层层自组装和磁控溅射等成熟工艺构建了两种光纤表面等离激元共振折射率计, 同时对折射率计膜层材料进行了完备的表征. 折射率计传感结构分别设计为近场增强型和近导波型, 两种传感结构共振激发波段与光谱特性不同, 适用于不用检测场景. 近场增强型光纤折射率计灵敏度、品质因数最高分别达到2335.64 nm/RIU和24.15 RIU–1, 相比于单层金光纤折射率计分别增长了30.63%和24.87%, 适用于敏感膜层结构复杂、膜厚较厚的检测场景; 近导波型光纤折射率计灵敏度和品质因数分别为2802.06 nm/RIU和22.53 RIU–1, 相比于单层金光纤折射率计分别增长了56.72%和16.49%, 适用于敏感膜层简单、膜层较薄的检测场景. 此外, 本文将两种类型折射率计集成在同一根光纤探针中实现了双通道传感. 本文开发的双通道光纤SPR折射率计在液相样本双参量检测, 如双蛋白联合检测、温度/折射率同时检测等方面具有一定应用前景.

    感谢科学指南针实验室(www.shiyanjia.com)邢力新老师等为本文研究中材料特性表征提供的支持和帮助.

    光纤端面研磨各阶段扫描电子显微镜图如图A1所示, 图A1(a)图A1(b)图A1(c)图A1(d)分别对应未研磨、粗磨、细磨、精磨四个阶段, 经过3次不同程度的研磨, 光纤端面的平整度显著提高. 平整的光纤端面更有利于金反射镜的制备, 进而有效降低光损耗, 提升光反射率.

    壳聚糖和聚丙烯酸的傅里叶红外光谱如图A2(a)图A2(b)所示, 壳聚糖分子中的氨基与聚丙烯酸分子中的羧基是保证分散剂分别带有正电、负电的有效官能团, 两种分散剂的Zeta电位分别如图A3(a)图A3(b)所示.

    紫磷的拉曼光谱、扫描电子显微镜能谱图和X射线衍射光谱分别如图A4(a)A4(c)所示.

    近场增强型和近导波型光纤SPR折射率计的传感区截面扫描电子显微镜图如图A5(a)图A5(b)所示, 图中可以明显看出膜层的分层结构.

    图 A5 (a)近场增强和(b)近导波型光纤SPR折射率计传感区截面扫描电子显微镜图(105倍)\r\nFig. A5. Scanning electron microscopy images of cross sections of sensing areas of (a) the near-field enhanced and (b) the nearly guided wave fiber refractometers.
    图 A5  (a)近场增强和(b)近导波型光纤SPR折射率计传感区截面扫描电子显微镜图(105倍)
    Fig. A5.  Scanning electron microscopy images of cross sections of sensing areas of (a) the near-field enhanced and (b) the nearly guided wave fiber refractometers.
    [1]

    Liu Z W, Wu J N, Cai C, Yang B, Qi Z M 2022 Nat. Commun. 13 6475Google Scholar

    [2]

    Ribeiro J A, Sales M G F, Pereira C M 2022 TrAC, Trends Anal. Chem. 157 116766Google Scholar

    [3]

    Tan J S, Chen Y Y, He J, Occhipinti L G, Wang Z H, Zhou X H 2023 J. Hazard. Mater. 455 131644Google Scholar

    [4]

    Cao S Q, Shao Y, Wang Y, Wu T S, Zhang L F, Huang Y J, Zhang F, Liao C R, He J, Wang Y P 2018 Opt. Express 26 3988Google Scholar

    [5]

    Jing J Y, Liu K, Jiang J F, Xu T H, Xiao L, Zhan X H, Liu T G 2023 Adv. Sci. 10 2207437Google Scholar

    [6]

    Dastmalchi B, Tassin P, Koschny T, Soukoulis C M 2016 Adv. Opt. Mater. 4 177Google Scholar

    [7]

    Mai Z G, Zhang J H, Chen Y Z, Wang J Q, Hong X M, Su Q N, Li X J 2019 Biosens. Bioelectron. 144 111621Google Scholar

    [8]

    Li X G, Gong P Q, Zhao Q M, Zhou X, Zhang Y A, Zhao Y 2022 Sens. Actuators, B 359 131596Google Scholar

    [9]

    Yasli A 2021 Plasmonics 16 1605Google Scholar

    [10]

    Shakya A K, Singh S 2022 Opt. Laser Technol. 153 108246Google Scholar

    [11]

    Liu R C, Yang W, Lu J J, Shafi M, Jiang M S, Jiang S Z 2023 Nanotechnology 34 095501Google Scholar

    [12]

    Hu S Q, Chen J Y, Liang J H, Luo J J, Shi W C, Yuan J M, Chen Y F, Chen L, Chen Z, Liu G S, Luo Y H 2022 ACS Appl. Mater. Interfaces 14 42412Google Scholar

    [13]

    Liu Z H, Zhang M, Zhang Y, Zhang Y X, Liu K Q, Zhang J Z, Yang J, Yuan L B 2019 Opt. Lett. 44 2907Google Scholar

    [14]

    Chiavaioli F, Gouveia C A J, Jorge P A S, Baldini F 2017 Biosensors-Basel 7 23Google Scholar

    [15]

    Jing J Y, Liu K, Jiang J F, Xu T H, Wang S, Ma J Y, Zhang Z, Zhang W L, Liu T G 2021 Photonics Res. 10 126Google Scholar

    [16]

    Shalabney A, Abdulhalim I 2011 Laser Photonics Rev. 5 571Google Scholar

    [17]

    Zhang L H, Huang H Y, Zhang B, Gu M Y, Zhao D, Zhao X W, Li L R, Zhou J, Wu K, Cheng Y H, Zhang J Y 2020 Angew. Chem. Int. Ed. 59 1074Google Scholar

    [18]

    Cicirello G, Wang M J, Sam Q P, Hart J L, Williams N L, Yin H B, Cha J J, Wang J J 2023 J. Am. Chem. Soc. 145 8218Google Scholar

    [19]

    Qiao J S, Kong X H, Hu Z X, Yang F, Ji W 2014 Nat. Commun. 5 4475Google Scholar

    [20]

    Jing J Y, Liu K, Jiang J F, Xu T H, Wang S, Liu T G 2023 Opto-Electron. Adv. 6 220072Google Scholar

    [21]

    Rehman H U, Cord-Landwehr S, Shapaval V, Dzurendova S, Kohler A, Moerschbacher B M, Zimmermann B 2023 Carbohydr. Polym. 302 120428Google Scholar

    [22]

    Patil R S, Sancaktar E 2021 Polymer 233 124181Google Scholar

    [23]

    Zhao Y, Tong R J, Xia F, Peng Y 2019 Biosens. Bioelectron. 142 111505Google Scholar

    [24]

    Guo J F, Xie R H, Wang Y X, Xiao L Z, Fu J W, Jin G W, Luo S H 2023 IEEE Trans. Geosci. Remote Sens. 61 5902014Google Scholar

    [25]

    Zhan S Y, Wang X P, Liu Y L 2011 Meas. Sci. Technol. 22 025201Google Scholar

    [26]

    Wang Q, Cong X W, Zhao W M, Ren Z H, Du N N, Yan X, Zhu A S, Qiu F M, Chen B H, Zhang K K 2022 IEEE Trans. Instrum. Meas. 71 7005808Google Scholar

    [27]

    Li Y L, Sun Q, Zu S, Shi X, Liu Y Q, Hu X Y, Ueno K, Gong Q H, Misawa H 2020 Phys. Rev. Lett. 124 163901Google Scholar

    [28]

    Chen Y Z, Ge Y Q, Huang W C, Li Z J, Wu L M, Zhang H, Li X J 2020 ACS Appl. Nano Mater. 3 303Google Scholar

    [29]

    Zhou Y A, Yan X 2022 IEEE Photonics J. 14 7151607Google Scholar

    [30]

    Chopra A, Mohanta G C, Das B, Bhatnagar R, Pal, S S 2021 IEEE Sens. J. 21 12153Google Scholar

    [31]

    Zakaria R, Zainuddin N M, Fahri M A S A, Thirunavakkarasu P M, Patel S K, Harun S W 2021 Opt. Fiber Technol. 61 102449Google Scholar

    [32]

    Zakaria R, Zainuddin N A M, Raya S A, Alwi S A K, Anwar T, Sarlan A, Ahmed K, Amiri I S 2020 Micromachines-Basel 11 77Google Scholar

    [33]

    Zhang H, Chen Y F, Feng X J, Xiong X, Hu S Q, Jiang Z P, Dong J L, Zhu W G, Qiu W T, Guan H Y, Lu H H, Yu J H, Zhong Y C, Zhang J, He M, Luo Y H, Chen Z 2018 IEEE J. Sel. Top. Quantum Electron. 25 7101909Google Scholar

    [34]

    赵静, 王英, 王义平 2019 激光与光电子学进展 56 230601Google Scholar

    Zhao J, Wang Y, Wang Y P 2019 Laser Optoelectron. Progress 56 230601Google Scholar

    [35]

    Zainuddin N A M, Ariannejad M M, Arasu P T, Harun S W, Zakaria R 2019 Results Phys. 13 102255Google Scholar

    [36]

    Amiri I S, Alwi S A K, Raya S A, Zainuddin N A M, Rohizat N S, Rajan M S M, Zakaria R 2019 J. Opt. Commun. 44 53Google Scholar

    [37]

    Wang W J, Mai Z G, Chen Y Z, Wang J Q, Li L, Su Q N, Li X J, Hong X M 2017 Sci. Rep. 7 16904Google Scholar

    [38]

    Zhao J, Cao S Q, Liao C R, Wang Y, Wang G J, Xu X Z, Fu C L, Xu G W, Lian J R, Wang Y P 2016 Sens. Actuators, B 230 206Google Scholar

    [39]

    Shi S, Wang L B, Su R X, Liu B S, Huang R L, Qi W, He Z M 2015 Biosens. Bioelectron. 74 454Google Scholar

    [40]

    Cennamo N, Massarotti D, Conte L, Zeni L 2011 Sensors-Basel 11 11752Google Scholar

    [41]

    Jing J Y, Liu K, Jiang J F, Xu T H, Wang S, Ma J Y, Zhang Z, Zhang W L, Liu T G 2021 Nanomaterials-Basel 11 2137Google Scholar

    [42]

    Qu J H, Leirs K, Maes W, Imbrechts M, Callewaert N, Lagrou K, Geukens N, Lammertyn J, Spasic D 2022 ACS Sens. 7 477Google Scholar

    [43]

    Zhang Y N, Zhang L B, Han B, Gao P, Wu Q L, Zhang A Z 2018 Sens. Actuators, B 272 331Google Scholar

    期刊类型引用(1)

    1. 陈越,罗彬彬,黄瑶,刘妍,石胜辉,赵明富,袁佩灵,吴胜昔. 基于Ti_3C_2-MXene增敏的无芯光纤表面等离子体共振折射率传感器. 光学学报. 2025(02): 134-143 . 百度学术

    其他类型引用(0)

  • 图 1  (a)近场增强型和(b)近导波型光纤SPR激发结构示意图

    Figure 1.  Schematic diagram of the sensing structure of (a) the near-field enhanced fiber SPR and (b) the nearly guided wave fiber SPR.

    图 2  双通道光纤SPR (a)有限元分析模型和(b)有限元损耗光谱. 模型参数: 纤芯半径rcore = 4.1 μm, 包层半径rcladding = 62.5 μm, 抛磨剩余厚度Dr = 66.6 μm, 金膜厚度50 nm, 紫磷厚度10 nm

    Figure 2.  (a) Finite element analysis model and (b) the loss spectrum of the double-lane fiber optic SPR. Model parameter: rcore = 4.1 μm, rcladding = 62.5 μm, Dr = 66.6 μm, the thickness of the Au layer and the VP layer is 50 nm and 10 nm, respectively.

    图 3  (a)光纤预处理流程示意图; (b)光纤端面研磨; (c)光纤端面金反射镜溅射

    Figure 3.  (a) Schematic diagram of fiber preprocessing process; (b) the grinding of the end face of the optical fiber; (c) the sputtering of the gold mirror on the fiber end face.

    图 A1  光纤端面研磨各阶段扫描电子显微镜图

    Figure A1.  Scanning electron microscopy of the end face of the optical fiber at each step.

    图 A2  (a)壳聚糖和(b)聚丙烯酸的傅里叶红外光谱图

    Figure A2.  Fourier transform infrared spectroscopy of (a) the CTS and (b) the PAA.

    图 A3  壳聚糖(a)和聚丙烯酸(b)的Zeta电位

    Figure A3.  Zeta potential of (a) the CTS and (b) the PAA.

    图 A4  紫磷的(a)拉曼光谱、(b)扫描电子显微镜能谱图和(c) X射线衍射光谱

    Figure A4.  (a) Raman spectrum, (b) the SEM energy spectrum and (c) the X-ray diffraction spectrum of the VP.

    图 4  (a)近场增强型光纤SPR折射率计制备流程; (b)近场增强光纤SPR折射率计传感结构示意图; (c)紫磷层层自组装; (d)传感区域金层溅射

    Figure 4.  (a) Fabrication process of the near-field enhanced fiber SPR refractometer; (b) schematic diagram of sensing structure of the near-field enhanced fiber SPR refractometer; (c) the self-assembly of the VP layer; (d) the sputtering of the Au layer on the sensing area.

    图 5  (a)近导波型光纤SPR折射率计制备流程; (b)近导波光纤SPR折射率计传感结构示意图; (c)传感区域金层溅射; (d)紫磷层层自组装

    Figure 5.  (a) Fabrication process of the nearly guided wave fiber SPR refractometer; (b) schematic diagram of sensing structure of the nearly guided wave fiber SPR refractometer; (c) the sputtering of the Au layer on the sensing area; (d) the self-assembly of the VP layer.

    图 6  光纤SPR折射率计信号解调系统示意图

    Figure 6.  Schematic diagram of the signal demodulation system for the fiber SPR refractometer.

    图 7  (a) 共振光谱信号噪声抑制; (b) 共振波长在线实时监测

    Figure 7.  (a) Noise suppression for the resonance spectra; (b) the online real-time monitoring of the resonance wavelength.

    图 8  增覆(a) 1层、(b) 2层和(c) 3层紫磷电介质层的近场增强型光纤SPR折射率计共振光谱; (d)增覆不同紫磷电介质层的光纤SPR折射率计平均灵敏度, 插图为三种光纤SPR折射率计共振波长与折射率点二次拟合曲线

    Figure 8.  Resonance spectra of the near-field enhanced fiber SPR refractometer with (a) one-layer, (b) two-layer and (c) three-layer VP dielectric layers; (d) average sensitivity of the above three types of fiber SPR refractometers. Inset: binomial fitting curves of resonance wavelengths and refractive index points of three types of fiber SPR refractometers.

    图 9  增覆2层紫磷电介质层的近导波型光纤SPR折射率计(a)共振光谱和(b)平均灵敏度, 插图: 近导波型光纤 SPR 折射率计共振波长与折射率点二次拟合曲线

    Figure 9.  (a) Resonance spectra and (b) the average sensitivity of the nearly guided wave fiber SPR refractometer coated with two-layer VP dielectric layer. Inset: the binomial fitting curve of resonance wavelengths and refractive index points.

    图 10  (a)近场增强型和(b)近导波型光纤SPR折射率计重复性测试

    Figure 10.  Repeatability of (a) the near-field enhanced fiber SPR refractometer and (b) the nearly guided wave fiber SPR refractometer

    图 11  双通道光纤SPR折射率计(a)示意图和(b)实物图

    Figure 11.  (a) Schematic diagram and (b) realistic image of the double-lane optical fiber SPR refractometer.

    图 12  双通道光纤SPR折射率计(a)共振光谱与(b)平均灵敏度. 插图为双通道光纤SPR折射率计共振波长与折射率点二次拟合曲线

    Figure 12.  (a) Resonance spectra and (b) the average sensitivity of the double-lane optical fiber SPR refractometer. Inset: the binomial fitting curve of resonance wavelengths and refractive index points.

    图 A5  (a)近场增强和(b)近导波型光纤SPR折射率计传感区截面扫描电子显微镜图(105倍)

    Figure A5.  Scanning electron microscopy images of cross sections of sensing areas of (a) the near-field enhanced and (b) the nearly guided wave fiber refractometers.

    表 1  折射率传感特性对比

    Table 1.  Comparison of refractive index sensing characteristics.

    传感结构 灵敏度/(nm·RIU–1) 半峰全宽/nm 品质因数/(RIU–1)
    光纤/金/待测物 1787.93 92.43 19.34
    光纤/一层紫磷/金/待测物 1927.61 79.82 24.15
    光纤/两层紫磷/金/待测物 2140.53 93.22 22.96
    光纤/三层紫磷/金/待测物 2335.64 116.94 24.15
    光纤/金/两层紫磷/待测物 2802.06 124.39 22.53
    DownLoad: CSV

    表 2  本文光纤SPR折射率计光谱特性与已报道光纤SPR传感器光谱特性对比

    Table 2.  Comparison between the study in this work and reported works.

    传感结构 折射率测量范围 灵敏度计算方法 灵敏度/(nm·RIU–1) 半峰全宽/nm 品质因数(RIU–1) 年份 参考文献
    多模-单模-多模光纤/金/Ti3C2Tx/待测物 1.3343—1.3658 线性拟合 2180.2 2022 [28]
    侧抛单模光纤/金/Ti3C2Tx/待测物 1.32—1.34 线性拟合 3143 206 15.26 2022 [29]
    锥形多模光纤/铬/金/待测物 1.337—1.359 线性拟合 2266 2021 [30]
    侧抛单模光纤/氟化镁/银/待测物 1.33—1.34 波长差与折射率差的比值 2812.50 35.95 78.23 2021 [31]
    侧抛单模光纤/铜/待测物 1.3330—1.3573 波长差与折射率差的比值 425 2.5 2020 [32]
    侧抛多模光纤/氟化镁/银/待测物 1.333—1.360 线性拟合 1603 47.80 33.54 2019 [33]
    侧抛单模光纤/银/氧化石墨烯/待测物 1.32—1.34 波长差与折射率差的比值 2252.50 60.50 37.22 2019 [34]
    侧抛单模光纤/银/待测物 1.333—1.345 波长差与折射率差的比值 2166.67 25 2019 [35]
    侧抛单模光纤/银/氧化石墨烯/待测物 1.30—1.34 波长差与折射率差的比值 833.33 10 2019 [36]
    多模光纤/金/待测物 1.3345—1.3592 线性拟合 2659.64 2017 [37]
    侧抛单模光纤/银/待测物 1.320—1.340 多项式拟合 1798.0 58.60 30.68 2016 [38]
    多模光纤/化学镀金/待测物 1.333—1.359 线性拟合 2054 108.2 19 2015 [39]
    多模光纤/光刻胶/金/待测物 1.332—1.352 波长差与折射率差的比值 2422 181 2011 [40]
    多模光纤/三层紫磷/金/待测物 1.3335—1.3435 二次拟合 2335.64 116.94 24.15 本文工作
    多模光纤/金/两层紫磷/待测物 1.3352—1.3472 二次拟合 2802.06 124.39 22.53
    DownLoad: CSV
  • [1]

    Liu Z W, Wu J N, Cai C, Yang B, Qi Z M 2022 Nat. Commun. 13 6475Google Scholar

    [2]

    Ribeiro J A, Sales M G F, Pereira C M 2022 TrAC, Trends Anal. Chem. 157 116766Google Scholar

    [3]

    Tan J S, Chen Y Y, He J, Occhipinti L G, Wang Z H, Zhou X H 2023 J. Hazard. Mater. 455 131644Google Scholar

    [4]

    Cao S Q, Shao Y, Wang Y, Wu T S, Zhang L F, Huang Y J, Zhang F, Liao C R, He J, Wang Y P 2018 Opt. Express 26 3988Google Scholar

    [5]

    Jing J Y, Liu K, Jiang J F, Xu T H, Xiao L, Zhan X H, Liu T G 2023 Adv. Sci. 10 2207437Google Scholar

    [6]

    Dastmalchi B, Tassin P, Koschny T, Soukoulis C M 2016 Adv. Opt. Mater. 4 177Google Scholar

    [7]

    Mai Z G, Zhang J H, Chen Y Z, Wang J Q, Hong X M, Su Q N, Li X J 2019 Biosens. Bioelectron. 144 111621Google Scholar

    [8]

    Li X G, Gong P Q, Zhao Q M, Zhou X, Zhang Y A, Zhao Y 2022 Sens. Actuators, B 359 131596Google Scholar

    [9]

    Yasli A 2021 Plasmonics 16 1605Google Scholar

    [10]

    Shakya A K, Singh S 2022 Opt. Laser Technol. 153 108246Google Scholar

    [11]

    Liu R C, Yang W, Lu J J, Shafi M, Jiang M S, Jiang S Z 2023 Nanotechnology 34 095501Google Scholar

    [12]

    Hu S Q, Chen J Y, Liang J H, Luo J J, Shi W C, Yuan J M, Chen Y F, Chen L, Chen Z, Liu G S, Luo Y H 2022 ACS Appl. Mater. Interfaces 14 42412Google Scholar

    [13]

    Liu Z H, Zhang M, Zhang Y, Zhang Y X, Liu K Q, Zhang J Z, Yang J, Yuan L B 2019 Opt. Lett. 44 2907Google Scholar

    [14]

    Chiavaioli F, Gouveia C A J, Jorge P A S, Baldini F 2017 Biosensors-Basel 7 23Google Scholar

    [15]

    Jing J Y, Liu K, Jiang J F, Xu T H, Wang S, Ma J Y, Zhang Z, Zhang W L, Liu T G 2021 Photonics Res. 10 126Google Scholar

    [16]

    Shalabney A, Abdulhalim I 2011 Laser Photonics Rev. 5 571Google Scholar

    [17]

    Zhang L H, Huang H Y, Zhang B, Gu M Y, Zhao D, Zhao X W, Li L R, Zhou J, Wu K, Cheng Y H, Zhang J Y 2020 Angew. Chem. Int. Ed. 59 1074Google Scholar

    [18]

    Cicirello G, Wang M J, Sam Q P, Hart J L, Williams N L, Yin H B, Cha J J, Wang J J 2023 J. Am. Chem. Soc. 145 8218Google Scholar

    [19]

    Qiao J S, Kong X H, Hu Z X, Yang F, Ji W 2014 Nat. Commun. 5 4475Google Scholar

    [20]

    Jing J Y, Liu K, Jiang J F, Xu T H, Wang S, Liu T G 2023 Opto-Electron. Adv. 6 220072Google Scholar

    [21]

    Rehman H U, Cord-Landwehr S, Shapaval V, Dzurendova S, Kohler A, Moerschbacher B M, Zimmermann B 2023 Carbohydr. Polym. 302 120428Google Scholar

    [22]

    Patil R S, Sancaktar E 2021 Polymer 233 124181Google Scholar

    [23]

    Zhao Y, Tong R J, Xia F, Peng Y 2019 Biosens. Bioelectron. 142 111505Google Scholar

    [24]

    Guo J F, Xie R H, Wang Y X, Xiao L Z, Fu J W, Jin G W, Luo S H 2023 IEEE Trans. Geosci. Remote Sens. 61 5902014Google Scholar

    [25]

    Zhan S Y, Wang X P, Liu Y L 2011 Meas. Sci. Technol. 22 025201Google Scholar

    [26]

    Wang Q, Cong X W, Zhao W M, Ren Z H, Du N N, Yan X, Zhu A S, Qiu F M, Chen B H, Zhang K K 2022 IEEE Trans. Instrum. Meas. 71 7005808Google Scholar

    [27]

    Li Y L, Sun Q, Zu S, Shi X, Liu Y Q, Hu X Y, Ueno K, Gong Q H, Misawa H 2020 Phys. Rev. Lett. 124 163901Google Scholar

    [28]

    Chen Y Z, Ge Y Q, Huang W C, Li Z J, Wu L M, Zhang H, Li X J 2020 ACS Appl. Nano Mater. 3 303Google Scholar

    [29]

    Zhou Y A, Yan X 2022 IEEE Photonics J. 14 7151607Google Scholar

    [30]

    Chopra A, Mohanta G C, Das B, Bhatnagar R, Pal, S S 2021 IEEE Sens. J. 21 12153Google Scholar

    [31]

    Zakaria R, Zainuddin N M, Fahri M A S A, Thirunavakkarasu P M, Patel S K, Harun S W 2021 Opt. Fiber Technol. 61 102449Google Scholar

    [32]

    Zakaria R, Zainuddin N A M, Raya S A, Alwi S A K, Anwar T, Sarlan A, Ahmed K, Amiri I S 2020 Micromachines-Basel 11 77Google Scholar

    [33]

    Zhang H, Chen Y F, Feng X J, Xiong X, Hu S Q, Jiang Z P, Dong J L, Zhu W G, Qiu W T, Guan H Y, Lu H H, Yu J H, Zhong Y C, Zhang J, He M, Luo Y H, Chen Z 2018 IEEE J. Sel. Top. Quantum Electron. 25 7101909Google Scholar

    [34]

    赵静, 王英, 王义平 2019 激光与光电子学进展 56 230601Google Scholar

    Zhao J, Wang Y, Wang Y P 2019 Laser Optoelectron. Progress 56 230601Google Scholar

    [35]

    Zainuddin N A M, Ariannejad M M, Arasu P T, Harun S W, Zakaria R 2019 Results Phys. 13 102255Google Scholar

    [36]

    Amiri I S, Alwi S A K, Raya S A, Zainuddin N A M, Rohizat N S, Rajan M S M, Zakaria R 2019 J. Opt. Commun. 44 53Google Scholar

    [37]

    Wang W J, Mai Z G, Chen Y Z, Wang J Q, Li L, Su Q N, Li X J, Hong X M 2017 Sci. Rep. 7 16904Google Scholar

    [38]

    Zhao J, Cao S Q, Liao C R, Wang Y, Wang G J, Xu X Z, Fu C L, Xu G W, Lian J R, Wang Y P 2016 Sens. Actuators, B 230 206Google Scholar

    [39]

    Shi S, Wang L B, Su R X, Liu B S, Huang R L, Qi W, He Z M 2015 Biosens. Bioelectron. 74 454Google Scholar

    [40]

    Cennamo N, Massarotti D, Conte L, Zeni L 2011 Sensors-Basel 11 11752Google Scholar

    [41]

    Jing J Y, Liu K, Jiang J F, Xu T H, Wang S, Ma J Y, Zhang Z, Zhang W L, Liu T G 2021 Nanomaterials-Basel 11 2137Google Scholar

    [42]

    Qu J H, Leirs K, Maes W, Imbrechts M, Callewaert N, Lagrou K, Geukens N, Lammertyn J, Spasic D 2022 ACS Sens. 7 477Google Scholar

    [43]

    Zhang Y N, Zhang L B, Han B, Gao P, Wu Q L, Zhang A Z 2018 Sens. Actuators, B 272 331Google Scholar

  • [1] Li Kai, Sun Jie, Du Zai-Fa, Qian Feng-Song, Tang Peng-Hao, Mei Yu, Xu Chen, Yan Qun, Liu Ming, Li Long-Fei, Guo Wei-Ling. Metal thermopile infrared detector with vertical graphene. Acta Physica Sinica, 2023, 72(3): 038101. doi: 10.7498/aps.72.20221564
    [2] Ye Gao-Jie, Yin Cheng, Li Si-Yu, Yu Qiang, Wang Xian-Ping, Wu Jian. Surface lattice resonance effect of double-ring array of metallic nano-particles. Acta Physica Sinica, 2023, 72(10): 104201. doi: 10.7498/aps.72.20230199
    [3] Zhang Lian, Wang Hua-Yu, Wang Ning, Tao Can, Zhai Xue-Lin, Ma Ping-Zhun, Zhong Ying, Liu Hai-Tao. Broadband enhancement of spontaneous emission by optical dipole nanoantenna on metallic substrate: An intuitive model of surface plasmon polariton. Acta Physica Sinica, 2022, 71(11): 118101. doi: 10.7498/aps.70.20212290
    [4] Zhang Lian,  Wang Hua-Yu,  Wang Ning,  Tao Can,  Zhai Xue-Lin,  Ma Ping-Zhun,  Zhong Ying,  Liu Hai-Tao. Broadband Enhancement of the Spontaneous Emission by an Optical Dipole Nanoantenna on Metallic Substrate: an Intuitive Model of Surface Plasmon Polariton. Acta Physica Sinica, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20212290
    [5] Li Jian-Kang, Li Rui. Numerical simulation study of surface enhancement coherent anti-Stokes Raman scattering reinforced substrate. Acta Physica Sinica, 2021, 70(10): 104207. doi: 10.7498/aps.70.20201773
    [6] Liu Zi, Zhang Heng, Wu Hao, Liu Chang. Enhancement of photoluminescence from zinc oxide by aluminum nanoparticle surface plasmon. Acta Physica Sinica, 2019, 68(10): 107301. doi: 10.7498/aps.68.20190062
    [7] Zhu Xu-Peng, Shi Hui-Min, Zhang Shi, Chen Zhi-Quan, Zheng Meng-Jie, Wang Ya-Si, Xue Shu-Wen, Zhang Jun, Duan Hui-Gao. Review on surface plasmonic coupling systems and their applications in spectra enhancement. Acta Physica Sinica, 2019, 68(14): 147304. doi: 10.7498/aps.68.20190782
    [8] Feng Shi-Liang, Wang Jing-Yu, Chen Shu, Meng Ling-Yan, Shen Shao-Xin, Yang Zhi-Lin. Surface plasmon resonance “hot spots” and near-field enhanced spectroscopy at interfaces. Acta Physica Sinica, 2019, 68(14): 147801. doi: 10.7498/aps.68.20190305
    [9] Qi Yun-Ping, Zhou Pei-Yang, Zhang Xue-Wei, Yan Chun-Man, Wang Xiang-Xian. Enhanced optical transmission by exciting hybrid states of Tamm and surface plasmon polaritons in single slit with multi-pair groove nanostructure. Acta Physica Sinica, 2018, 67(10): 107104. doi: 10.7498/aps.67.20180117
    [10] Wan Ting, Luo Zhao-Ming, Min Li, Chen Min, Xiao Lei. Enhanced photonic spin Hall effect due to controllable permittivity of alloy film. Acta Physica Sinica, 2018, 67(6): 064201. doi: 10.7498/aps.67.20171824
    [11] Jiang Hang, Zhou Yu-Rong, Liu Feng-Zhen, Zhou Yu-Qin. Effect of annealing treatment on characteristics of surface plasmon resonance for indium tin oxide. Acta Physica Sinica, 2018, 67(17): 177802. doi: 10.7498/aps.67.20180435
    [12] Huang Yun-Huan, Li Pu. Extinction properties of gold nanorod complexes. Acta Physica Sinica, 2015, 64(20): 207301. doi: 10.7498/aps.64.207301
    [13] Zhang Xing-Fang, Yan Xin. Tunable properties of localized surface plasmon resonance wavelength of gold nanoshell. Acta Physica Sinica, 2013, 62(3): 037805. doi: 10.7498/aps.62.037805
    [14] Wang Yue, Liu Li-Wei, Hu Si-Yi, Li Qi-Yang, Sun Zhen-Hao, Miao Xin-Hui, Yang Xiao-Chuan, Zhang Xi-He. Simulation study based on the COMSOL Mutiphysics to the surface plasmon resonance of Cu2S quantum dots. Acta Physica Sinica, 2013, 62(19): 197803. doi: 10.7498/aps.62.197803
    [15] Zou Wei-Bo, Zhou Jun, Jin Li, Zhang Hao-Peng. Properties of localized surface plasmon resonance of gold nanoshell pairs. Acta Physica Sinica, 2012, 61(9): 097805. doi: 10.7498/aps.61.097805
    [16] Cong Chao, Wu Da-Jian, Liu Xiao-Jun, Li Bo. Study on the localized surface plasmon resonance properties of bimetallic gold and silver three-layered nanotubes. Acta Physica Sinica, 2012, 61(3): 037301. doi: 10.7498/aps.61.037301
    [17] Yang Zhen-Ling, Liu Yu-Qiang, Yang Yan-Qiang. ExtendedQ-band fluorescence lifetime of Tetraphenyl porphyrins adsorbed on silver nanoparticles. Acta Physica Sinica, 2012, 61(3): 037805. doi: 10.7498/aps.61.037805
    [18] Cong Chao, Wu Da-Jian, Liu Xiao-Jun. Localized surface plasmon resonance propertiesof elliptical gold nanotubes. Acta Physica Sinica, 2011, 60(4): 046102. doi: 10.7498/aps.60.046102
    [19] Gong Yuan, Guo Yu, Rao Yun-Jiang, Zhao Tian, Wu Yu, Ran Zeng-Ling. Sensitivity analysis of hybrid fiber Fabry-Pérot refractive-index sensor. Acta Physica Sinica, 2011, 60(6): 064202. doi: 10.7498/aps.60.064202
    [20] Hou Jian-Ping, Ning Tao, Gai Shuang-Long, Li Peng, Hao Jian-Ping, Zhao Jian-Lin. Sensitivity analysis of refractive index measurement based on intermodal interference in photonic crystal fiber. Acta Physica Sinica, 2010, 59(7): 4732-4737. doi: 10.7498/aps.59.4732
  • 期刊类型引用(1)

    1. 陈越,罗彬彬,黄瑶,刘妍,石胜辉,赵明富,袁佩灵,吴胜昔. 基于Ti_3C_2-MXene增敏的无芯光纤表面等离子体共振折射率传感器. 光学学报. 2025(02): 134-143 . 百度学术

    其他类型引用(0)

Metrics
  • Abstract views:  3985
  • PDF Downloads:  84
  • Cited By: 1
Publishing process
  • Received Date:  08 July 2023
  • Accepted Date:  10 August 2023
  • Available Online:  24 August 2023
  • Published Online:  05 November 2023

/

返回文章
返回