Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Violet phosphorus-enhanced plug-and-play double-lane fiber optic surface plasmon resonance refractometer

Jing Jian-Ying Liu Kun Wu Zhang-Yi Liu Yue-Meng Jiang Jun-Feng Xu Tian-Hua Yan Wei-Cheng Xiong Yi-Yang Zhan Xiao-Han Xiao Lu Liu Jin-Chang Liu Tie-Gen

Citation:

Violet phosphorus-enhanced plug-and-play double-lane fiber optic surface plasmon resonance refractometer

Jing Jian-Ying, Liu Kun, Wu Zhang-Yi, Liu Yue-Meng, Jiang Jun-Feng, Xu Tian-Hua, Yan Wei-Cheng, Xiong Yi-Yang, Zhan Xiao-Han, Xiao Lu, Liu Jin-Chang, Liu Tie-Gen
PDF
HTML
Get Citation
  • The fiber optic surface plasmon resonance (SPR) technologies can directly detect the change of the refractive index on the surface of the sensor, caused by the interaction of biochemical molecules. Fiber optic SPR technologies have advantages of small size, low cost, no labeling, high sensitivity, and are easy to realize the miniaturization, multi-parameter, real-time and in-situ detection. Two types of probe-type fiber optic SPR refractometers are constructed based on the novel two-dimensional nanomaterial, i.e., violet phosphorus (VP), the mature fabrication and characterization technologies. The fabrication processes of the fiber optic SPR refractometers are first introduced, and then the feasibility of the fabrication processes is verified via multiple characterization methods. In terms of the signal demodulation, the noise of the resonance spectrum is suppressed by the variational mode decomposition algorithm, and the resonance wavelength is interrogated and monitored in real time by the centroid method. The refractive index sensing performances of the near-field enhanced fiber optic SPR refractometers coated with different layers of VP are investigated. With the increase of the VP layer number, the resonance spectrum exhibits redshift and broadening and the sensitivity is enhanced. The refractive index sensing performance of the nearly guided wave fiber optic SPR refractometer is also investigated. In the low refractive index range of 1.33-1.34 corresponding to the refractive index of the low-concentration biological solution, the sensitivity and the figure of merit of the near-field enhanced fiber optic SPR refractometer with the sensing structure of fiber core/VP dielectric layer/Au layer/sample layer reach to 2335.64 nm/RIU and 24.15 RIU–1, respectively, which are 1.31 times and 1.25 times higher than the counterparts of the single Au layer fiber optic SPR refractometer, respectively. The sensitivity and the figure of merit of the nearly guided wave fiber optic SPR refractometer with the sensing structure of fiber core/Au layer/VP dielectric layer/sample layer can reach to 2802.06 nm/RIU and 22.53 RIU–1, respectively, which are 1.57 times and 1.16 times higher than the counterparts of the single Au layer fiber optic SPR refractometer. Finally, the near-field enhanced SPR and the nearly guided wave SPR are integrated into a single fiber probe to achieve the double-lane sensing. The fiber optic SPR refractometers developed in this study can realize the high-sensitivity, plug-and-play and double-lane detection of the combination of surface refractive index and volume refractive index. The probe-type refractometer also provides a new idea for detecting multi-type protein molecules and heavy metal ions in the biochemical field.
      Corresponding author: Liu Kun, beiyangkl@tju.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61922061, 61775161, 61735011) and the Tianjin Science Fund for Distinguished Young Scholars, China (Grant No. 19JCJQJC61400).
    [1]

    Liu Z W, Wu J N, Cai C, Yang B, Qi Z M 2022 Nat. Commun. 13 6475Google Scholar

    [2]

    Ribeiro J A, Sales M G F, Pereira C M 2022 TrAC, Trends Anal. Chem. 157 116766Google Scholar

    [3]

    Tan J S, Chen Y Y, He J, Occhipinti L G, Wang Z H, Zhou X H 2023 J. Hazard. Mater. 455 131644Google Scholar

    [4]

    Cao S Q, Shao Y, Wang Y, Wu T S, Zhang L F, Huang Y J, Zhang F, Liao C R, He J, Wang Y P 2018 Opt. Express 26 3988Google Scholar

    [5]

    Jing J Y, Liu K, Jiang J F, Xu T H, Xiao L, Zhan X H, Liu T G 2023 Adv. Sci. 10 2207437Google Scholar

    [6]

    Dastmalchi B, Tassin P, Koschny T, Soukoulis C M 2016 Adv. Opt. Mater. 4 177Google Scholar

    [7]

    Mai Z G, Zhang J H, Chen Y Z, Wang J Q, Hong X M, Su Q N, Li X J 2019 Biosens. Bioelectron. 144 111621Google Scholar

    [8]

    Li X G, Gong P Q, Zhao Q M, Zhou X, Zhang Y A, Zhao Y 2022 Sens. Actuators, B 359 131596Google Scholar

    [9]

    Yasli A 2021 Plasmonics 16 1605Google Scholar

    [10]

    Shakya A K, Singh S 2022 Opt. Laser Technol. 153 108246Google Scholar

    [11]

    Liu R C, Yang W, Lu J J, Shafi M, Jiang M S, Jiang S Z 2023 Nanotechnology 34 095501Google Scholar

    [12]

    Hu S Q, Chen J Y, Liang J H, Luo J J, Shi W C, Yuan J M, Chen Y F, Chen L, Chen Z, Liu G S, Luo Y H 2022 ACS Appl. Mater. Interfaces 14 42412Google Scholar

    [13]

    Liu Z H, Zhang M, Zhang Y, Zhang Y X, Liu K Q, Zhang J Z, Yang J, Yuan L B 2019 Opt. Lett. 44 2907Google Scholar

    [14]

    Chiavaioli F, Gouveia C A J, Jorge P A S, Baldini F 2017 Biosensors-Basel 7 23Google Scholar

    [15]

    Jing J Y, Liu K, Jiang J F, Xu T H, Wang S, Ma J Y, Zhang Z, Zhang W L, Liu T G 2021 Photonics Res. 10 126Google Scholar

    [16]

    Shalabney A, Abdulhalim I 2011 Laser Photonics Rev. 5 571Google Scholar

    [17]

    Zhang L H, Huang H Y, Zhang B, Gu M Y, Zhao D, Zhao X W, Li L R, Zhou J, Wu K, Cheng Y H, Zhang J Y 2020 Angew. Chem. Int. Ed. 59 1074Google Scholar

    [18]

    Cicirello G, Wang M J, Sam Q P, Hart J L, Williams N L, Yin H B, Cha J J, Wang J J 2023 J. Am. Chem. Soc. 145 8218Google Scholar

    [19]

    Qiao J S, Kong X H, Hu Z X, Yang F, Ji W 2014 Nat. Commun. 5 4475Google Scholar

    [20]

    Jing J Y, Liu K, Jiang J F, Xu T H, Wang S, Liu T G 2023 Opto-Electron. Adv. 6 220072Google Scholar

    [21]

    Rehman H U, Cord-Landwehr S, Shapaval V, Dzurendova S, Kohler A, Moerschbacher B M, Zimmermann B 2023 Carbohydr. Polym. 302 120428Google Scholar

    [22]

    Patil R S, Sancaktar E 2021 Polymer 233 124181Google Scholar

    [23]

    Zhao Y, Tong R J, Xia F, Peng Y 2019 Biosens. Bioelectron. 142 111505Google Scholar

    [24]

    Guo J F, Xie R H, Wang Y X, Xiao L Z, Fu J W, Jin G W, Luo S H 2023 IEEE Trans. Geosci. Remote Sens. 61 5902014Google Scholar

    [25]

    Zhan S Y, Wang X P, Liu Y L 2011 Meas. Sci. Technol. 22 025201Google Scholar

    [26]

    Wang Q, Cong X W, Zhao W M, Ren Z H, Du N N, Yan X, Zhu A S, Qiu F M, Chen B H, Zhang K K 2022 IEEE Trans. Instrum. Meas. 71 7005808Google Scholar

    [27]

    Li Y L, Sun Q, Zu S, Shi X, Liu Y Q, Hu X Y, Ueno K, Gong Q H, Misawa H 2020 Phys. Rev. Lett. 124 163901Google Scholar

    [28]

    Chen Y Z, Ge Y Q, Huang W C, Li Z J, Wu L M, Zhang H, Li X J 2020 ACS Appl. Nano Mater. 3 303Google Scholar

    [29]

    Zhou Y A, Yan X 2022 IEEE Photonics J. 14 7151607Google Scholar

    [30]

    Chopra A, Mohanta G C, Das B, Bhatnagar R, Pal, S S 2021 IEEE Sens. J. 21 12153Google Scholar

    [31]

    Zakaria R, Zainuddin N M, Fahri M A S A, Thirunavakkarasu P M, Patel S K, Harun S W 2021 Opt. Fiber Technol. 61 102449Google Scholar

    [32]

    Zakaria R, Zainuddin N A M, Raya S A, Alwi S A K, Anwar T, Sarlan A, Ahmed K, Amiri I S 2020 Micromachines-Basel 11 77Google Scholar

    [33]

    Zhang H, Chen Y F, Feng X J, Xiong X, Hu S Q, Jiang Z P, Dong J L, Zhu W G, Qiu W T, Guan H Y, Lu H H, Yu J H, Zhong Y C, Zhang J, He M, Luo Y H, Chen Z 2018 IEEE J. Sel. Top. Quantum Electron. 25 7101909Google Scholar

    [34]

    赵静, 王英, 王义平 2019 激光与光电子学进展 56 230601Google Scholar

    Zhao J, Wang Y, Wang Y P 2019 Laser Optoelectron. Progress 56 230601Google Scholar

    [35]

    Zainuddin N A M, Ariannejad M M, Arasu P T, Harun S W, Zakaria R 2019 Results Phys. 13 102255Google Scholar

    [36]

    Amiri I S, Alwi S A K, Raya S A, Zainuddin N A M, Rohizat N S, Rajan M S M, Zakaria R 2019 J. Opt. Commun. 44 53Google Scholar

    [37]

    Wang W J, Mai Z G, Chen Y Z, Wang J Q, Li L, Su Q N, Li X J, Hong X M 2017 Sci. Rep. 7 16904Google Scholar

    [38]

    Zhao J, Cao S Q, Liao C R, Wang Y, Wang G J, Xu X Z, Fu C L, Xu G W, Lian J R, Wang Y P 2016 Sens. Actuators, B 230 206Google Scholar

    [39]

    Shi S, Wang L B, Su R X, Liu B S, Huang R L, Qi W, He Z M 2015 Biosens. Bioelectron. 74 454Google Scholar

    [40]

    Cennamo N, Massarotti D, Conte L, Zeni L 2011 Sensors-Basel 11 11752Google Scholar

    [41]

    Jing J Y, Liu K, Jiang J F, Xu T H, Wang S, Ma J Y, Zhang Z, Zhang W L, Liu T G 2021 Nanomaterials-Basel 11 2137Google Scholar

    [42]

    Qu J H, Leirs K, Maes W, Imbrechts M, Callewaert N, Lagrou K, Geukens N, Lammertyn J, Spasic D 2022 ACS Sens. 7 477Google Scholar

    [43]

    Zhang Y N, Zhang L B, Han B, Gao P, Wu Q L, Zhang A Z 2018 Sens. Actuators, B 272 331Google Scholar

  • 图 1  (a)近场增强型和(b)近导波型光纤SPR激发结构示意图

    Figure 1.  Schematic diagram of the sensing structure of (a) the near-field enhanced fiber SPR and (b) the nearly guided wave fiber SPR.

    图 2  双通道光纤SPR (a)有限元分析模型和(b)有限元损耗光谱. 模型参数: 纤芯半径rcore = 4.1 μm, 包层半径rcladding = 62.5 μm, 抛磨剩余厚度Dr = 66.6 μm, 金膜厚度50 nm, 紫磷厚度10 nm

    Figure 2.  (a) Finite element analysis model and (b) the loss spectrum of the double-lane fiber optic SPR. Model parameter: rcore = 4.1 μm, rcladding = 62.5 μm, Dr = 66.6 μm, the thickness of the Au layer and the VP layer is 50 nm and 10 nm, respectively.

    图 3  (a)光纤预处理流程示意图; (b)光纤端面研磨; (c)光纤端面金反射镜溅射

    Figure 3.  (a) Schematic diagram of fiber preprocessing process; (b) the grinding of the end face of the optical fiber; (c) the sputtering of the gold mirror on the fiber end face.

    图 A1  光纤端面研磨各阶段扫描电子显微镜图

    Figure A1.  Scanning electron microscopy of the end face of the optical fiber at each step.

    图 A2  (a)壳聚糖和(b)聚丙烯酸的傅里叶红外光谱图

    Figure A2.  Fourier transform infrared spectroscopy of (a) the CTS and (b) the PAA.

    图 A3  壳聚糖(a)和聚丙烯酸(b)的Zeta电位

    Figure A3.  Zeta potential of (a) the CTS and (b) the PAA.

    图 A4  紫磷的(a)拉曼光谱、(b)扫描电子显微镜能谱图和(c) X射线衍射光谱

    Figure A4.  (a) Raman spectrum, (b) the SEM energy spectrum and (c) the X-ray diffraction spectrum of the VP.

    图 4  (a)近场增强型光纤SPR折射率计制备流程; (b)近场增强光纤SPR折射率计传感结构示意图; (c)紫磷层层自组装; (d)传感区域金层溅射

    Figure 4.  (a) Fabrication process of the near-field enhanced fiber SPR refractometer; (b) schematic diagram of sensing structure of the near-field enhanced fiber SPR refractometer; (c) the self-assembly of the VP layer; (d) the sputtering of the Au layer on the sensing area.

    图 5  (a)近导波型光纤SPR折射率计制备流程; (b)近导波光纤SPR折射率计传感结构示意图; (c)传感区域金层溅射; (d)紫磷层层自组装

    Figure 5.  (a) Fabrication process of the nearly guided wave fiber SPR refractometer; (b) schematic diagram of sensing structure of the nearly guided wave fiber SPR refractometer; (c) the sputtering of the Au layer on the sensing area; (d) the self-assembly of the VP layer.

    图 6  光纤SPR折射率计信号解调系统示意图

    Figure 6.  Schematic diagram of the signal demodulation system for the fiber SPR refractometer.

    图 7  (a) 共振光谱信号噪声抑制; (b) 共振波长在线实时监测

    Figure 7.  (a) Noise suppression for the resonance spectra; (b) the online real-time monitoring of the resonance wavelength.

    图 8  增覆(a) 1层、(b) 2层和(c) 3层紫磷电介质层的近场增强型光纤SPR折射率计共振光谱; (d)增覆不同紫磷电介质层的光纤SPR折射率计平均灵敏度, 插图为三种光纤SPR折射率计共振波长与折射率点二次拟合曲线

    Figure 8.  Resonance spectra of the near-field enhanced fiber SPR refractometer with (a) one-layer, (b) two-layer and (c) three-layer VP dielectric layers; (d) average sensitivity of the above three types of fiber SPR refractometers. Inset: binomial fitting curves of resonance wavelengths and refractive index points of three types of fiber SPR refractometers.

    图 9  增覆2层紫磷电介质层的近导波型光纤SPR折射率计(a)共振光谱和(b)平均灵敏度, 插图: 近导波型光纤 SPR 折射率计共振波长与折射率点二次拟合曲线

    Figure 9.  (a) Resonance spectra and (b) the average sensitivity of the nearly guided wave fiber SPR refractometer coated with two-layer VP dielectric layer. Inset: the binomial fitting curve of resonance wavelengths and refractive index points.

    图 10  (a)近场增强型和(b)近导波型光纤SPR折射率计重复性测试

    Figure 10.  Repeatability of (a) the near-field enhanced fiber SPR refractometer and (b) the nearly guided wave fiber SPR refractometer

    图 11  双通道光纤SPR折射率计(a)示意图和(b)实物图

    Figure 11.  (a) Schematic diagram and (b) realistic image of the double-lane optical fiber SPR refractometer.

    图 12  双通道光纤SPR折射率计(a)共振光谱与(b)平均灵敏度. 插图为双通道光纤SPR折射率计共振波长与折射率点二次拟合曲线

    Figure 12.  (a) Resonance spectra and (b) the average sensitivity of the double-lane optical fiber SPR refractometer. Inset: the binomial fitting curve of resonance wavelengths and refractive index points.

    图 A5  (a)近场增强和(b)近导波型光纤SPR折射率计传感区截面扫描电子显微镜图(105倍)

    Figure A5.  Scanning electron microscopy images of cross sections of sensing areas of (a) the near-field enhanced and (b) the nearly guided wave fiber refractometers.

    表 1  折射率传感特性对比

    Table 1.  Comparison of refractive index sensing characteristics.

    传感结构 灵敏度/(nm·RIU–1)
    半峰全宽/nm
    品质因数/(RIU–1)
    光纤/金/待测物 1787.93 92.43 19.34
    光纤/一层紫磷/金/待测物 1927.61 79.82 24.15
    光纤/两层紫磷/金/待测物 2140.53 93.22 22.96
    光纤/三层紫磷/金/待测物 2335.64 116.94 24.15
    光纤/金/两层紫磷/待测物 2802.06 124.39 22.53
    DownLoad: CSV

    表 2  本文光纤SPR折射率计光谱特性与已报道光纤SPR传感器光谱特性对比

    Table 2.  Comparison between the study in this work and reported works.

    传感结构 折射率
    测量范围
    灵敏度
    计算方法
    灵敏度/
    (nm·RIU–1)
    半峰全宽/
    nm
    品质因数
    (RIU–1)
    年份 参考
    文献
    多模-单模-多模光纤/金/
    Ti3C2Tx/待测物
    1.3343—1.3658 线性拟合 2180.2 2022 [28]
    侧抛单模光纤/金/Ti3C2Tx/待测物 1.32—1.34 线性拟合 3143 206 15.26 2022 [29]
    锥形多模光纤/铬/金/待测物 1.337—1.359 线性拟合 2266 2021 [30]
    侧抛单模光纤/氟化镁/银/待测物 1.33—1.34 波长差与折射率差的比值 2812.50 35.95 78.23 2021 [31]
    侧抛单模光纤/铜/待测物 1.3330—1.3573 波长差与折射率差的比值 425 2.5 2020 [32]
    侧抛多模光纤/氟化镁/银/待测物 1.333—1.360 线性拟合 1603 47.80 33.54 2019 [33]
    侧抛单模光纤/银/氧化石墨烯/待测物 1.32—1.34 波长差与折射率差的比值 2252.50 60.50 37.22 2019 [34]
    侧抛单模光纤/银/待测物 1.333—1.345 波长差与折射率差的比值 2166.67 25 2019 [35]
    侧抛单模光纤/银/氧化石墨烯/待测物 1.30—1.34 波长差与折射率差的比值 833.33 10 2019 [36]
    多模光纤/金/待测物 1.3345—1.3592 线性拟合 2659.64 2017 [37]
    侧抛单模光纤/银/待测物 1.320—1.340 多项式
    拟合
    1798.0 58.60 30.68 2016 [38]
    多模光纤/化学镀金/待测物 1.333—1.359 线性拟合 2054 108.2 19 2015 [39]
    多模光纤/光刻胶/金/待测物 1.332—1.352 波长差与折射率差的比值 2422 181 2011 [40]
    多模光纤/三层紫磷/金/待测物 1.3335—1.3435 二次拟合 2335.64 116.94 24.15 本文工作
    多模光纤/金/两层紫磷/待测物 1.3352—1.3472 二次拟合 2802.06 124.39 22.53
    DownLoad: CSV
  • [1]

    Liu Z W, Wu J N, Cai C, Yang B, Qi Z M 2022 Nat. Commun. 13 6475Google Scholar

    [2]

    Ribeiro J A, Sales M G F, Pereira C M 2022 TrAC, Trends Anal. Chem. 157 116766Google Scholar

    [3]

    Tan J S, Chen Y Y, He J, Occhipinti L G, Wang Z H, Zhou X H 2023 J. Hazard. Mater. 455 131644Google Scholar

    [4]

    Cao S Q, Shao Y, Wang Y, Wu T S, Zhang L F, Huang Y J, Zhang F, Liao C R, He J, Wang Y P 2018 Opt. Express 26 3988Google Scholar

    [5]

    Jing J Y, Liu K, Jiang J F, Xu T H, Xiao L, Zhan X H, Liu T G 2023 Adv. Sci. 10 2207437Google Scholar

    [6]

    Dastmalchi B, Tassin P, Koschny T, Soukoulis C M 2016 Adv. Opt. Mater. 4 177Google Scholar

    [7]

    Mai Z G, Zhang J H, Chen Y Z, Wang J Q, Hong X M, Su Q N, Li X J 2019 Biosens. Bioelectron. 144 111621Google Scholar

    [8]

    Li X G, Gong P Q, Zhao Q M, Zhou X, Zhang Y A, Zhao Y 2022 Sens. Actuators, B 359 131596Google Scholar

    [9]

    Yasli A 2021 Plasmonics 16 1605Google Scholar

    [10]

    Shakya A K, Singh S 2022 Opt. Laser Technol. 153 108246Google Scholar

    [11]

    Liu R C, Yang W, Lu J J, Shafi M, Jiang M S, Jiang S Z 2023 Nanotechnology 34 095501Google Scholar

    [12]

    Hu S Q, Chen J Y, Liang J H, Luo J J, Shi W C, Yuan J M, Chen Y F, Chen L, Chen Z, Liu G S, Luo Y H 2022 ACS Appl. Mater. Interfaces 14 42412Google Scholar

    [13]

    Liu Z H, Zhang M, Zhang Y, Zhang Y X, Liu K Q, Zhang J Z, Yang J, Yuan L B 2019 Opt. Lett. 44 2907Google Scholar

    [14]

    Chiavaioli F, Gouveia C A J, Jorge P A S, Baldini F 2017 Biosensors-Basel 7 23Google Scholar

    [15]

    Jing J Y, Liu K, Jiang J F, Xu T H, Wang S, Ma J Y, Zhang Z, Zhang W L, Liu T G 2021 Photonics Res. 10 126Google Scholar

    [16]

    Shalabney A, Abdulhalim I 2011 Laser Photonics Rev. 5 571Google Scholar

    [17]

    Zhang L H, Huang H Y, Zhang B, Gu M Y, Zhao D, Zhao X W, Li L R, Zhou J, Wu K, Cheng Y H, Zhang J Y 2020 Angew. Chem. Int. Ed. 59 1074Google Scholar

    [18]

    Cicirello G, Wang M J, Sam Q P, Hart J L, Williams N L, Yin H B, Cha J J, Wang J J 2023 J. Am. Chem. Soc. 145 8218Google Scholar

    [19]

    Qiao J S, Kong X H, Hu Z X, Yang F, Ji W 2014 Nat. Commun. 5 4475Google Scholar

    [20]

    Jing J Y, Liu K, Jiang J F, Xu T H, Wang S, Liu T G 2023 Opto-Electron. Adv. 6 220072Google Scholar

    [21]

    Rehman H U, Cord-Landwehr S, Shapaval V, Dzurendova S, Kohler A, Moerschbacher B M, Zimmermann B 2023 Carbohydr. Polym. 302 120428Google Scholar

    [22]

    Patil R S, Sancaktar E 2021 Polymer 233 124181Google Scholar

    [23]

    Zhao Y, Tong R J, Xia F, Peng Y 2019 Biosens. Bioelectron. 142 111505Google Scholar

    [24]

    Guo J F, Xie R H, Wang Y X, Xiao L Z, Fu J W, Jin G W, Luo S H 2023 IEEE Trans. Geosci. Remote Sens. 61 5902014Google Scholar

    [25]

    Zhan S Y, Wang X P, Liu Y L 2011 Meas. Sci. Technol. 22 025201Google Scholar

    [26]

    Wang Q, Cong X W, Zhao W M, Ren Z H, Du N N, Yan X, Zhu A S, Qiu F M, Chen B H, Zhang K K 2022 IEEE Trans. Instrum. Meas. 71 7005808Google Scholar

    [27]

    Li Y L, Sun Q, Zu S, Shi X, Liu Y Q, Hu X Y, Ueno K, Gong Q H, Misawa H 2020 Phys. Rev. Lett. 124 163901Google Scholar

    [28]

    Chen Y Z, Ge Y Q, Huang W C, Li Z J, Wu L M, Zhang H, Li X J 2020 ACS Appl. Nano Mater. 3 303Google Scholar

    [29]

    Zhou Y A, Yan X 2022 IEEE Photonics J. 14 7151607Google Scholar

    [30]

    Chopra A, Mohanta G C, Das B, Bhatnagar R, Pal, S S 2021 IEEE Sens. J. 21 12153Google Scholar

    [31]

    Zakaria R, Zainuddin N M, Fahri M A S A, Thirunavakkarasu P M, Patel S K, Harun S W 2021 Opt. Fiber Technol. 61 102449Google Scholar

    [32]

    Zakaria R, Zainuddin N A M, Raya S A, Alwi S A K, Anwar T, Sarlan A, Ahmed K, Amiri I S 2020 Micromachines-Basel 11 77Google Scholar

    [33]

    Zhang H, Chen Y F, Feng X J, Xiong X, Hu S Q, Jiang Z P, Dong J L, Zhu W G, Qiu W T, Guan H Y, Lu H H, Yu J H, Zhong Y C, Zhang J, He M, Luo Y H, Chen Z 2018 IEEE J. Sel. Top. Quantum Electron. 25 7101909Google Scholar

    [34]

    赵静, 王英, 王义平 2019 激光与光电子学进展 56 230601Google Scholar

    Zhao J, Wang Y, Wang Y P 2019 Laser Optoelectron. Progress 56 230601Google Scholar

    [35]

    Zainuddin N A M, Ariannejad M M, Arasu P T, Harun S W, Zakaria R 2019 Results Phys. 13 102255Google Scholar

    [36]

    Amiri I S, Alwi S A K, Raya S A, Zainuddin N A M, Rohizat N S, Rajan M S M, Zakaria R 2019 J. Opt. Commun. 44 53Google Scholar

    [37]

    Wang W J, Mai Z G, Chen Y Z, Wang J Q, Li L, Su Q N, Li X J, Hong X M 2017 Sci. Rep. 7 16904Google Scholar

    [38]

    Zhao J, Cao S Q, Liao C R, Wang Y, Wang G J, Xu X Z, Fu C L, Xu G W, Lian J R, Wang Y P 2016 Sens. Actuators, B 230 206Google Scholar

    [39]

    Shi S, Wang L B, Su R X, Liu B S, Huang R L, Qi W, He Z M 2015 Biosens. Bioelectron. 74 454Google Scholar

    [40]

    Cennamo N, Massarotti D, Conte L, Zeni L 2011 Sensors-Basel 11 11752Google Scholar

    [41]

    Jing J Y, Liu K, Jiang J F, Xu T H, Wang S, Ma J Y, Zhang Z, Zhang W L, Liu T G 2021 Nanomaterials-Basel 11 2137Google Scholar

    [42]

    Qu J H, Leirs K, Maes W, Imbrechts M, Callewaert N, Lagrou K, Geukens N, Lammertyn J, Spasic D 2022 ACS Sens. 7 477Google Scholar

    [43]

    Zhang Y N, Zhang L B, Han B, Gao P, Wu Q L, Zhang A Z 2018 Sens. Actuators, B 272 331Google Scholar

  • [1] Li Kai, Sun Jie, Du Zai-Fa, Qian Feng-Song, Tang Peng-Hao, Mei Yu, Xu Chen, Yan Qun, Liu Ming, Li Long-Fei, Guo Wei-Ling. Metal thermopile infrared detector with vertical graphene. Acta Physica Sinica, 2023, 72(3): 038101. doi: 10.7498/aps.72.20221564
    [2] Ye Gao-Jie, Yin Cheng, Li Si-Yu, Yu Qiang, Wang Xian-Ping, Wu Jian. Surface lattice resonance effect of double-ring array of metallic nano-particles. Acta Physica Sinica, 2023, 72(10): 104201. doi: 10.7498/aps.72.20230199
    [3] Zhang Lian, Wang Hua-Yu, Wang Ning, Tao Can, Zhai Xue-Lin, Ma Ping-Zhun, Zhong Ying, Liu Hai-Tao. Broadband enhancement of spontaneous emission by optical dipole nanoantenna on metallic substrate: An intuitive model of surface plasmon polariton. Acta Physica Sinica, 2022, 71(11): 118101. doi: 10.7498/aps.70.20212290
    [4] Zhang Lian,  Wang Hua-Yu,  Wang Ning,  Tao Can,  Zhai Xue-Lin,  Ma Ping-Zhun,  Zhong Ying,  Liu Hai-Tao. Broadband Enhancement of the Spontaneous Emission by an Optical Dipole Nanoantenna on Metallic Substrate: an Intuitive Model of Surface Plasmon Polariton. Acta Physica Sinica, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20212290
    [5] Li Jian-Kang, Li Rui. Numerical simulation study of surface enhancement coherent anti-Stokes Raman scattering reinforced substrate. Acta Physica Sinica, 2021, 70(10): 104207. doi: 10.7498/aps.70.20201773
    [6] Liu Zi, Zhang Heng, Wu Hao, Liu Chang. Enhancement of photoluminescence from zinc oxide by aluminum nanoparticle surface plasmon. Acta Physica Sinica, 2019, 68(10): 107301. doi: 10.7498/aps.68.20190062
    [7] Zhu Xu-Peng, Shi Hui-Min, Zhang Shi, Chen Zhi-Quan, Zheng Meng-Jie, Wang Ya-Si, Xue Shu-Wen, Zhang Jun, Duan Hui-Gao. Review on surface plasmonic coupling systems and their applications in spectra enhancement. Acta Physica Sinica, 2019, 68(14): 147304. doi: 10.7498/aps.68.20190782
    [8] Feng Shi-Liang, Wang Jing-Yu, Chen Shu, Meng Ling-Yan, Shen Shao-Xin, Yang Zhi-Lin. Surface plasmon resonance “hot spots” and near-field enhanced spectroscopy at interfaces. Acta Physica Sinica, 2019, 68(14): 147801. doi: 10.7498/aps.68.20190305
    [9] Qi Yun-Ping, Zhou Pei-Yang, Zhang Xue-Wei, Yan Chun-Man, Wang Xiang-Xian. Enhanced optical transmission by exciting hybrid states of Tamm and surface plasmon polaritons in single slit with multi-pair groove nanostructure. Acta Physica Sinica, 2018, 67(10): 107104. doi: 10.7498/aps.67.20180117
    [10] Wan Ting, Luo Zhao-Ming, Min Li, Chen Min, Xiao Lei. Enhanced photonic spin Hall effect due to controllable permittivity of alloy film. Acta Physica Sinica, 2018, 67(6): 064201. doi: 10.7498/aps.67.20171824
    [11] Jiang Hang, Zhou Yu-Rong, Liu Feng-Zhen, Zhou Yu-Qin. Effect of annealing treatment on characteristics of surface plasmon resonance for indium tin oxide. Acta Physica Sinica, 2018, 67(17): 177802. doi: 10.7498/aps.67.20180435
    [12] Huang Yun-Huan, Li Pu. Extinction properties of gold nanorod complexes. Acta Physica Sinica, 2015, 64(20): 207301. doi: 10.7498/aps.64.207301
    [13] Zhang Xing-Fang, Yan Xin. Tunable properties of localized surface plasmon resonance wavelength of gold nanoshell. Acta Physica Sinica, 2013, 62(3): 037805. doi: 10.7498/aps.62.037805
    [14] Wang Yue, Liu Li-Wei, Hu Si-Yi, Li Qi-Yang, Sun Zhen-Hao, Miao Xin-Hui, Yang Xiao-Chuan, Zhang Xi-He. Simulation study based on the COMSOL Mutiphysics to the surface plasmon resonance of Cu2S quantum dots. Acta Physica Sinica, 2013, 62(19): 197803. doi: 10.7498/aps.62.197803
    [15] Zou Wei-Bo, Zhou Jun, Jin Li, Zhang Hao-Peng. Properties of localized surface plasmon resonance of gold nanoshell pairs. Acta Physica Sinica, 2012, 61(9): 097805. doi: 10.7498/aps.61.097805
    [16] Cong Chao, Wu Da-Jian, Liu Xiao-Jun, Li Bo. Study on the localized surface plasmon resonance properties of bimetallic gold and silver three-layered nanotubes. Acta Physica Sinica, 2012, 61(3): 037301. doi: 10.7498/aps.61.037301
    [17] Yang Zhen-Ling, Liu Yu-Qiang, Yang Yan-Qiang. ExtendedQ-band fluorescence lifetime of Tetraphenyl porphyrins adsorbed on silver nanoparticles. Acta Physica Sinica, 2012, 61(3): 037805. doi: 10.7498/aps.61.037805
    [18] Cong Chao, Wu Da-Jian, Liu Xiao-Jun. Localized surface plasmon resonance propertiesof elliptical gold nanotubes. Acta Physica Sinica, 2011, 60(4): 046102. doi: 10.7498/aps.60.046102
    [19] Gong Yuan, Guo Yu, Rao Yun-Jiang, Zhao Tian, Wu Yu, Ran Zeng-Ling. Sensitivity analysis of hybrid fiber Fabry-Pérot refractive-index sensor. Acta Physica Sinica, 2011, 60(6): 064202. doi: 10.7498/aps.60.064202
    [20] Hou Jian-Ping, Ning Tao, Gai Shuang-Long, Li Peng, Hao Jian-Ping, Zhao Jian-Lin. Sensitivity analysis of refractive index measurement based on intermodal interference in photonic crystal fiber. Acta Physica Sinica, 2010, 59(7): 4732-4737. doi: 10.7498/aps.59.4732
Metrics
  • Abstract views:  2761
  • PDF Downloads:  78
  • Cited By: 0
Publishing process
  • Received Date:  08 July 2023
  • Accepted Date:  10 August 2023
  • Available Online:  24 August 2023
  • Published Online:  05 November 2023

/

返回文章
返回