Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Study on the morphology control of Au@Ag nanocuboids

WANG Zhiyuan ZHANG Hui

Citation:

Study on the morphology control of Au@Ag nanocuboids

WANG Zhiyuan, ZHANG Hui
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • Au@Ag core-shell nanoparticles have emerged as promising platforms for photonic applications due to their synergistic integration of gold’s biocompatibility and silver’s exceptional plasmonic properties. And Nanoparticles with sharp corners exhibit electron accumulation at the tips under electromagnetic fields, generating enhanced localized electric fields. This phenomenon facilitates their applications in surface-enhanced Raman spectroscopy (SERS) and strong coupling interactions, among other fields. So, when Au@Ag core-shell nanoparticles coupled with sharp corners, there will be outstanding performance in trace molecule detection, biosensing and catalytic applications. This study systematically investigates the seed-mediated synthesis of Au@Ag nanocuboids with tunable morphology, size and surface plasmon resonance (SPR) by using gold nanorod (AuNR) seeds with different dimensions and adjusting the volume of silver precursors. Key synthesis parameters, including AuNR diameters, aspect ratios and AgNO3 volumes, are modulated to achieve morphological, size and optical control. In experiments adjusting the size of AuNR seeds for synthesizing Au@Ag nanocuboids, as the diameter of AuNR decreases from 136.5±5 nm to 11.2±2 nm and the aspect ratio increases from 1.39 to 8.20, the aspect ratio of Au@Ag nanocuboids increases from 1.18 to 2.69. Notably, when the diameter of AuNR is below 100 nm, the sharpness of the corners of Au@Ag nanocuboids progressively improves with increasing diameter and decreasing aspect ratio of the AuNRs. However, when the AuNR diameter exceeds 100 nm, the corners of the synthesized Au@Ag nanocuboids exhibit truncation. Meanwhile, the extinction spectrum reveals that, apart from the broadened and indistinct peaks caused by the size effect, Au@Ag nanocuboids can primarily excite the longitudinal plasmon resonance mode, transverse plasmon resonance mode, and octupolar plasmon resonance modes. Furthermore, the plasmon resonance peaks exhibit corresponding shifts in response to changes in the size and morphology of Au@Ag nanocuboids. Meanwhile, neither the characterization results of high-resolution transmission electron microscopy (HRTEM) nor selected area electron diffraction (SAED) can observe {111} crystal planes, indicating that the Au@Ag nanocuboids with the sharpest corners remains untruncated and exhibits an exceptional morphology. And high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) combined with energy-dispersive X-ray spectroscopy (EDS) characterization reveals that the silver shell exhibits anisotropic growth features on the gold core, with its transverse thickness being significantly greater than the longitudinal thickness. Besides, Au@Ag nanocuboids dimensions are linearly regulated by the volume of AgNOO3 (100 mM) from 5 μL to 30 μL, yielding tunable lengths (110.3 ±7.8 nm to 141.3 ±5.5 nm), widths (59.7 ±2.1 nm to 103.7 ±5.6 nm), aspect ratios (1.85 to 1.36) and corresponding plasmon resonance peaks as validated by SEM and extinction spectrum. The simulation results of their extinction spectra are in better agreement with the experimental measurements, and for the nanocuboid with aspect ratio of 1.45, the strength of the electric field at the corners shows a tendency to be enhanced and then weakened with the decreasing of the sharpness of the top corners (r/L = 0.2% - 11.5%), in which the strength of the electric field enhancement is greatest at r/L = 0.5%.
    This work synthesizes Au@Ag nanocuboids with controllable sharpness of corners and dimension by adjusting the size and aspect ratio of AuNRs or changing the amount of silver precursors. The method proposed in this study for synthesizing sharp-cornered Au@Ag nanocuboids provides possibilities for customized fabrication of Au@Ag nanocuboids, thereby expanding their application prospects in nanophotonics, catalysis, sensing, photothermal therapy and other fields.
  • [1]

    Mendez E, Fagundez P, Sosa P, Gutierrez M V, Botasini S 2021 Nanotechnology 32 045603

    [2]

    Bi C, Yin X, Zhao H 2024 RSC Adv. 14 20145

    [3]

    Xiong L, Ding H W, Li G Y 2022 Acta Phys. Sin. 71 047802(熊磊,丁洪伟,李光 元.银纳米粒子阵列中衍射诱导高品质因子的四偶极晶格等离子体模式2022物 理学报71 047802)

    [4]

    Lee D, Yoon S 2016 J. Phys. Chem. C 120 20642

    [5]

    McLellan J M, Siekkinen A, Chen J, Xia Y 2006 Chem. Phys. Lett. 427 122

    [6]

    Rycenga M, Camargo P H, Li W, Moran C H, Xia Y 2010 J. Phys. Chem. Lett. 1 696

    [7]

    Zhong J, Li J Y, Liu J, Xiang Y, Feng H, Liu R, Li W, Wang X H 2024 Nano Lett. 24 1579

    [8]

    Li J, Wang Q, Wang J, Li M, Zhang X, Luan L, Li P, Xu W 2021 Anal. Bioanal. Chem. 413 4207

    [9]

    Lin S, Guan H, Liu Y, Huang S, Li J, Hasi W, Xu Y, Zou J, Dong B 2021 ACS Appl. Mater. Interfaces 13 53289

    [10]

    Ma Y, Li W, Cho E C, Li Z, Yu T, Zeng J, Xie Z, Xia Y 2010 ACS Nano 4 6725

    [11]

    Liu K-K, Tadepalli S, Tian L, Singamaneni S 2015 Chem. Mater. 27 5261

    [12]

    Xing C, Zhong S, Yu J, Li X, Cao A, Men D, Wu B, Cai W, Li Y 2020 J. Mater. Chem. C 8 3838

    [13]

    Cho E C, Camargo P H C, Xia Y 2010 Adv. Mater. 22 744

    [14]

    Zheng Y, Zhong X, Li Z, Xia Y 2013 Part. Part. Syst. Char. 31 266

    [15]

    Sanchez-Iglesias A, Winckelmans N, Altantzis T, Bals S, Grzelczak M, Liz-Marzan L M 2017 J. Am. Chem. Soc. 139 107

    [16]

    Park J E, Lee Y, Nam J M 2018 Nano Lett. 18 6475

    [17]

    Lin S, Lin X, Han S, He L, Zhao H, Zhang J, Hasi W, Wang L 2019 J. Alloys Compd. 805 318

    [18]

    Okuno Y, Nishioka K, Kiya A, Nakashima N, Ishibashi A, Niidome Y 2010 Nanoscale 2 1489

    [19]

    Park K, Drummy L F, Vaia R A 2011 J. Mater. Chem. 21 15608

    [20]

    Tebbe M, Kuttner C, Mayer M, Maennel M, Pazos-Perez N, König T A F, Fery A 2015 J. Phys. Chem. C 119 9513

    [21]

    Jiang R, Chen H, Shao L, Li Q, Wang J 2012 Adv. Mater. 24 OP200

    [22]

    Vernier C, Portalès H 2024 J. Chem. Phys. 161 124711

    [23]

    Hamon C, Constantin D 2020 J. Phys. Chem. C 124 21717

    [24]

    Chang S T, Dong W Y, Chen K C, He Y, Yen Y A, Kao C W, Deng J P 2021 J. Chin. Chem. Soc. 68 512

    [25]

    He B, Liu X, Chen L 2023 Nano Lett. 23 3963

    [26]

    Gómez-Graña S, Goris B, Altantzis T, Fernández-López C, Carbó-Argibay E, Guerrero-Martínez A, Almora-Barrios N, López N, Pastoriza-Santos I, Pérez-Juste J, Bals S, Van Tendeloo G, Liz-Marzán L M 2013 J. Phys. Chem. Lett. 4 2209

    [27]

    Ye X, Zheng C, Chen J, Gao Y, Murray C B 2013 Nano Lett. 13 765

    [28]

    Vigderman L, Zubarev E R 2013 Chem. Mater. 25 1450

    [29]

    Thambi V, Kar A, Ghosh P, Paital D, Gautam A R S, Khatua S 2019 ACS Omega 4 13733

    [30]

    da Silva J A, Netz P A, Meneghetti M R 2025 J. Chem. Inf. Model. 65 2730

    [31]

    da Silva J A, Netz P A, Meneghetti M R 2020 Langmuir 36 257

    [32]

    Jing H, Zhang Q, Large N, Yu C, Blom D A, Nordlander P, Wang H 2014 Nano Lett. 14 3674

    [33]

    Jiang R, Chen H, Shao L, Li Q, Wang J 2012 Adv. Mater. 24 OP200

    [34]

    Hamasaki Y, Nakashima N, Niidome Y 2012 J. Phys. Chem. C 117 2521

    [35]

    Xia Y, Xia X, Peng H C 2015 J. Am. Chem. Soc. 137 7947

    [36]

    Herrmann L O, Baumberg J J 2013 Small 9 3743

    [37]

    König T, Kodiyath R, Combs Z A, Mahmoud M A, El-Sayed M A, Tsukruk V V 2013 Part. Part. Syst. Char. 31 274

    [38]

    Liu M, Pang Y, Zhang B, De Luna P, Voznyy O, Xu J, Zheng X, Dinh C T, Fan F, Cao C, de Arquer F P G, Safaei T S, Mepham A, Klinkova A, Kumacheva E, Filleter T, Sinton D, Kelley S O, Sargent E H 2016 Nature 537 382

    [39]

    Pena-Rodriguez O, Diaz-Nunez P, Gonzalez-Rubio G, Manzaneda-Gonzalez V, Rivera A, Perlado J M, Junquera E, Guerrero-Martinez A 2020 Sci. Rep. 10 5921

    [40]

    Guo P, Sikdar D, Huang X, Si K J, Xiong W, Gong S, Yap L W, Premaratne M, Cheng W 2015 Nanoscale 7 2862

    [41]

    Tan S F, Wu L, Yang J K W, Bai P, Bosman M, Nijhuis C A 2014 Science 343 1496

    [42]

    Pramod P, Thomas K G 2008 Adv. Mater. 20 4300

    [43]

    Li N, Han Z, Huang Y, Liang K, Wang X, Wu F, Qi X, Shang Y, Yu L, Ding B 2020 J. Mater. Chem. C 8 7672

    [44]

    Hu H, Zhang S, Xu H 2019 Phys. Rev. A 99 033815

    [45]

    Lee Y M, Kim S E, Park J E 2023 Nano Converg. 10 34

    [46]

    Yang X, Li J, Zhao Y, Yang J, Zhou L, Dai Z, Guo X, Mu S, Liu Q, Jiang C, Sun M, Wang J, Liang W 2017 Nanoscale 10 142

    [47]

    Li Y, Zhang Y, Xu J, Kan C, Li Z, Shi D 2024 CrystEngComm 26 5799

    [48]

    Yang T H, Ahn J, Shi S, Wang P, Gao R, Qin D 2021 Chem. Rev. 121 796

  • [1] Zheng Qin-Ren, Zhan Fu-Zhi, She Jun-Yi, Wang Jian-Yu, Shi Ruo-Li, Meng Guo-Dong. Influence of morphological characteristics of graphene on its field emission properties. Acta Physica Sinica, doi: 10.7498/aps.73.20231784
    [2] Li Kai, Sun Jie, Du Zai-Fa, Qian Feng-Song, Tang Peng-Hao, Mei Yu, Xu Chen, Yan Qun, Liu Ming, Li Long-Fei, Guo Wei-Ling. Metal thermopile infrared detector with vertical graphene. Acta Physica Sinica, doi: 10.7498/aps.72.20221564
    [3] Jing Jian-Ying, Liu Kun, Wu Zhang-Yi, Liu Yue-Meng, Jiang Jun-Feng, Xu Tian-Hua, Yan Wei-Cheng, Xiong Yi-Yang, Zhan Xiao-Han, Xiao Lu, Liu Jin-Chang, Liu Tie-Gen. Violet phosphorus-enhanced plug-and-play double-lane fiber optic surface plasmon resonance refractometer. Acta Physica Sinica, doi: 10.7498/aps.72.20231110
    [4] Ye Gao-Jie, Yin Cheng, Li Si-Yu, Yu Qiang, Wang Xian-Ping, Wu Jian. Surface lattice resonance effect of double-ring array of metallic nano-particles. Acta Physica Sinica, doi: 10.7498/aps.72.20230199
    [5] Li Jian-Kang, Li Rui. Numerical simulation study of surface enhancement coherent anti-Stokes Raman scattering reinforced substrate. Acta Physica Sinica, doi: 10.7498/aps.70.20201773
    [6] Li Pan. Research progress of plasmonic nanofocusing. Acta Physica Sinica, doi: 10.7498/aps.68.20190564
    [7] Zhu Xu-Peng, Shi Hui-Min, Zhang Shi, Chen Zhi-Quan, Zheng Meng-Jie, Wang Ya-Si, Xue Shu-Wen, Zhang Jun, Duan Hui-Gao. Review on surface plasmonic coupling systems and their applications in spectra enhancement. Acta Physica Sinica, doi: 10.7498/aps.68.20190782
    [8] Feng Shi-Liang, Wang Jing-Yu, Chen Shu, Meng Ling-Yan, Shen Shao-Xin, Yang Zhi-Lin. Surface plasmon resonance “hot spots” and near-field enhanced spectroscopy at interfaces. Acta Physica Sinica, doi: 10.7498/aps.68.20190305
    [9] Wan Ting, Luo Zhao-Ming, Min Li, Chen Min, Xiao Lei. Enhanced photonic spin Hall effect due to controllable permittivity of alloy film. Acta Physica Sinica, doi: 10.7498/aps.67.20171824
    [10] Jiang Hang, Zhou Yu-Rong, Liu Feng-Zhen, Zhou Yu-Qin. Effect of annealing treatment on characteristics of surface plasmon resonance for indium tin oxide. Acta Physica Sinica, doi: 10.7498/aps.67.20180435
    [11] Huang Yun-Huan, Li Pu. Extinction properties of gold nanorod complexes. Acta Physica Sinica, doi: 10.7498/aps.64.207301
    [12] Li Meng, Niu He-Ying, Yao Lu-Yan, Wang Dong-Liang, Zhou Zhong-Po, Ma Heng. Efficiency improvement in organic solar cells by doping cholesteric liquid crystal. Acta Physica Sinica, doi: 10.7498/aps.63.248403
    [13] Zhang Xing-Fang, Yan Xin. Tunable properties of localized surface plasmon resonance wavelength of gold nanoshell. Acta Physica Sinica, doi: 10.7498/aps.62.037805
    [14] Wang Yue, Liu Li-Wei, Hu Si-Yi, Li Qi-Yang, Sun Zhen-Hao, Miao Xin-Hui, Yang Xiao-Chuan, Zhang Xi-He. Simulation study based on the COMSOL Mutiphysics to the surface plasmon resonance of Cu2S quantum dots. Acta Physica Sinica, doi: 10.7498/aps.62.197803
    [15] Zou Wei-Bo, Zhou Jun, Jin Li, Zhang Hao-Peng. Properties of localized surface plasmon resonance of gold nanoshell pairs. Acta Physica Sinica, doi: 10.7498/aps.61.097805
    [16] Cong Chao, Wu Da-Jian, Liu Xiao-Jun, Li Bo. Study on the localized surface plasmon resonance properties of bimetallic gold and silver three-layered nanotubes. Acta Physica Sinica, doi: 10.7498/aps.61.037301
    [17] Yang Zhen-Ling, Liu Yu-Qiang, Yang Yan-Qiang. ExtendedQ-band fluorescence lifetime of Tetraphenyl porphyrins adsorbed on silver nanoparticles. Acta Physica Sinica, doi: 10.7498/aps.61.037805
    [18] Cong Chao, Wu Da-Jian, Liu Xiao-Jun. Localized surface plasmon resonance propertiesof elliptical gold nanotubes. Acta Physica Sinica, doi: 10.7498/aps.60.046102
    [19] Fang Fang, Zheng Shi-You, Zhou Guang-You, Chen Guo-Rong, Sun Da-Lin. Hydrogen-induced changes in optical and electrical properties of LaMg2Ni alloy film. Acta Physica Sinica, doi: 10.7498/aps.57.3813
    [20] Wang Hao, Zeng Gu-Cheng, Liao Chang-Jun, Cai Ji-Ye, Zheng Shu-Wen, Fan Guang-Han, Chen Yong, Liu Song-Hao. Study on the metamorphosis of InP self-organized islands grown on GaxxIn1-x1-xP buffer layers. Acta Physica Sinica, doi: 10.7498/aps.54.1726
Metrics
  • Abstract views:  97
  • PDF Downloads:  3
  • Cited By: 0
Publishing process
  • Available Online:  12 June 2025

/

返回文章
返回