Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Visible light modulation and anomalous thermal transport in two-dimensional X-AlN (X = C, Si, TC) semiconductor

Zhao Gang Liang Han-Pu Duan Yi-Feng

Citation:

Visible light modulation and anomalous thermal transport in two-dimensional X-AlN (X = C, Si, TC) semiconductor

Zhao Gang, Liang Han-Pu, Duan Yi-Feng
PDF
HTML
Get Citation
  • Aluminum nitride (AlN) is of paramount importance in developing electronic devices because of excellent stability and thermal transport performance. However, lack of novel materials which can provide colorful physical and chemical properties seriously hinders further digging out application potential. In this work, we perform an evolutionary structural search based on first-principles calculation and verify the dynamic and thermal dynamic stability of porous buckled AlN and X-AlN (X = C, Si, TC) structural system, which constructs by introducing C, Si atoms and triangular carbon (TC) into the porous vacancy of AlN, by calculating phonon spectra and first-principles molecular dynamic simulations. Structural deformation becomes gradually serious with the increase of structural unit size and significantly influences structural, electronic, and thermal transport properties. Firstly, we point out that a flat energy band appears around the Fermi level in C-AlN and Si-AlN because of weak interatomic interaction between C/Si and the neighbor Al atoms. Unoccupied C-/Si-pz and Al-pz do not form $ {\rm{\pi }} $ bond and only a localized flat band near Fermi level arises, and thus the absorption peaks of structures are enhanced and the red shift occurs. Bonding state of $ {\rm{\pi }} $ bond from hybridized C-pz orbitals in triangular carbon of TC-AlN lowers the energy of conduction band at K point in the first Brillouin zone and the corresponding antibonding state raises the band at Γ, therefore transition from indirect bandgap of AlN to direct bandgap of TC-AlN appears. Secondly, porous buckled AlN shows the lowest thermal conductivity due to asymmetric Al—N bonds around the porous vacancy and vertically stacked N—N bonds. Introduced C and Si atoms both reduce structural anharmonicity, while the former has a relatively small distortion, and so it has a higher thermal conductivity. Triangular carbon in TC-AlN hinders phonon scattering between FA mode and other phonon modes and has the weakest anharmonicity because of the strongest bond strength, and obtains the highest thermal transport performance. Finally, we unveil the physical mechanism of anomalous thermal conductivity in X-AlN system by modulating the biaxial tensile strain. Enhanced vertical N—N bonds dominate thermal transport due to its weaker anharmonicity with a slightly strain, and when tensile strain is above the 4%, soften phonon modes reduce phonon velocity and thus hinders the thermal transport process. Therefore, occurs the anomalous thermal transport behavior, i.e. thermal conductivity first rises and then drops with applied biaxial strain increasing. Our work paves the way for modulating two-dimensional AlN performance and provides a new insight for designing promising novel two-dimensional semiconductors.
      Corresponding author: Duan Yi-Feng, yifeng@cumt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11774416).
    [1]

    Robinson J A 2018 APL Mater. 6 058202Google Scholar

    [2]

    Shi L, Xu A, Zhao T 2017 ACS Appl. Mater. Interfaces 9 1987Google Scholar

    [3]

    Cai Y, Liu Y, Xie Y, Zou Y, Gao C, Zhao Y, Liu S, Xu H, Shi J, Guo S, Sun C 2020 APL Mater. 8 021107Google Scholar

    [4]

    叶倩, 沈阳, 袁野, 赵祎峰, 段纯刚 2020 物理学报 69 217710Google Scholar

    Ye Q, Shen Y, Yuan Y, Zhao Y F, Duan C G 2020 Acta Phys. Sin. 69 217710Google Scholar

    [5]

    陈蓉, 王远帆, 王熠欣, 梁前, 谢泉 2022 物理学报 71 127301Google Scholar

    Chen R, Wang Y F, Wang Y X, Liang Q, Xie Q 2022 Acta Phys. Sin. 71 127301Google Scholar

    [6]

    Liang H P, Duan Y F 2022 Chin. Phys. B 31 076301Google Scholar

    [7]

    Lü F, Liang H P, Duan Y F 2023 J. Phys. Chem. Lett. 14 663Google Scholar

    [8]

    Wan X G, Turner A M, Vishwanath A, Savrasov S Y 2011 Phys. Rev. B 83 205101Google Scholar

    [9]

    Liang H P, Duan Y F 2021 Nanoscale 13 11994Google Scholar

    [10]

    Akal L, Kusuki Y, N Shiba, Takayanagi T, Wei Z X 2021 Phys. Rev. Lett. 126 061604Google Scholar

    [11]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A 2004 Science 306 666Google Scholar

    [12]

    卢晓波, 张广宇 2015 物理学报 64 077305Google Scholar

    Lu X B, Zhang G Y 2015 Acta Phys. Sin. 64 077305Google Scholar

    [13]

    Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E, Jarillo-Herrero P 2018 Nature 556 43Google Scholar

    [14]

    Tan X, Xin Z Y, Liu X J, Mu Q G 2013 Adv. Mater. Research 821 841

    [15]

    Shimada K, Sota T, Suzuki K 1998 J. Appl. Phys. 84 4951Google Scholar

    [16]

    Zhang H, Yu S, Liu F, Wang Z, Lu M, Hu X, Chen Y, Xu X 2017 Sci. Chin. Phys. Mech. Astron. 60 044311Google Scholar

    [17]

    冯嘉恒, 唐立丹, 刘邦武, 夏洋, 王冰 2013 物理学报 62 116302Google Scholar

    Feng J H, Tang L D, Liu B W, Xia Y, Wang B 2013 Acta Phys. Sin. 62 116302Google Scholar

    [18]

    林竹, 郭志友, 毕艳君, 董玉成 2009 物理学报 58 191707Google Scholar

    Lin Z, Guo Z Y, Bi Y Z, Dong Y C 2009 Acta phys. Sin. 58 191707Google Scholar

    [19]

    程丽, 王德兴, 张杨, 苏丽萍, 陈淑妍, 王晓峰, 孙鹏, 易重桂 2018 物理学报 67 047101Google Scholar

    Cheng L, Wang D X, Zhang Y, Su L P, Chen S Y, Wang X F, Sun P, Yi C G 2018 Acta Phys. Sin. 67 047101Google Scholar

    [20]

    高小奇, 郭志友, 曹东兴, 张宇飞, 孙慧卿, 邓贝 2010 物理学报 59 3418Google Scholar

    Gao X Q, Guo Z Y, Cao D X, Zhang Y F, Sun H Q, Deng B 2010 Acta Phys. Sin. 59 3418Google Scholar

    [21]

    de Almeida Jr E F, de Brito Mota F, de Castilho C M C, Kakanakova-Georgieva A, Gueorguiev G K 2012 Eur. Phys. J. B 85 48Google Scholar

    [22]

    Jia Y P, Shi Z M, Hou W T, Zang H, Jiang K, Chen Y, Zhang S L, Qi Z B, Wu T, Sun X J, Li D B 2020 Npj 2D Mater. Appl. 4 31Google Scholar

    [23]

    Gürbüz E, Cahangirov S, Durgun E, Ciraci S 2017 Phys. Rev. B 96 205427Google Scholar

    [24]

    Zhou R, Liang H P, Duan Y F, Wei S H 2023 J. Phys. Chem. Lett. 14 737Google Scholar

    [25]

    Sheng X L, Yan Q B, Ye F, Zheng Q R, Su G 2011 Phys. Rev. Lett. 106 155703Google Scholar

    [26]

    Zhang J, Wang R, Zhu X, Pan A, Han C, Li X, Zhao D, Ma C, Wang Q, Su H, Niu C 2017 Nat. Commun. 8 683Google Scholar

    [27]

    Liu W H, Luo J W, Li S, Wang L W 2020 Phys. Rev. B 102 184308Google Scholar

    [28]

    Liang H P, Zhong H Z, Huang S, Duan Y F 2021 J. Phys. Chem. Lett. 12 10975Google Scholar

    [29]

    Oganov A R, Ma Y, Lyahov A O, Valle M, Gatti C 2010 Rev. Mineral. Geochem. 71 271Google Scholar

    [30]

    Oganov A R, Lyahov A O, Valle M 2011 Acc. Chem. Res. 44 227Google Scholar

    [31]

    Oganov A R, Class C W 2006 J. Chem. Phys. 124 244704Google Scholar

    [32]

    Hohenberg P, Kohn W 1964 Phys. Rev. 136 B864Google Scholar

    [33]

    Kohn W, Sham L J 1965 Phys. Rev. 140 A1133Google Scholar

    [34]

    Kresse H, Hafner J 1993 Phys. Rev. B 47 558Google Scholar

    [35]

    Kresse H, Hafner J 1994 Phys. Rev. B 49 14251Google Scholar

    [36]

    Kresse H, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [37]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [38]

    Heyd J, Scueria G E, Ernzerhof M 2003 J. Chem. Phys. 118 8207Google Scholar

    [39]

    Jia W, Fu J, Cao Z, Wang L, Chi X, Gao W, Wang L W 2013 Comput. Phys. Commun. 251 102Google Scholar

    [40]

    Jia W, Cao Z, Wang L, Fu J, Chi X, Gao W, Wang L W 2013 Comput. Phys. Commun. 184 9Google Scholar

    [41]

    Atsush T, Isa T 2015 Scr. Mater. 108 1Google Scholar

    [42]

    Li W, Carrete J, Katcho N A, Mingo N 2014 Comput. Phys. Commun. 185 1747Google Scholar

    [43]

    Homayoun J, Bahram A R, Mahdi F 2018 Solid State Commun. 282 21Google Scholar

    [44]

    程正富, 郑瑞伦 2016 物理学报 65 104701Google Scholar

    Cheng Z F, Zheng R L 2016 Acta Phys. Sin. 65 104701Google Scholar

    [45]

    Lü F, Liang H P, Duan Y F 2023 Phys. Rev. B 107 045422Google Scholar

    [46]

    Koh Y R, Mamun A, Bin Hoque M S, Liu Z Y, Bai T Y, Hussain K, Liao M E, Li R Y, Gaskins J T, Giri A, Tomko J, Braun J L, Gaevski M, Lee E, Yates L, Goorsky M S, Luo T F, Khan A, Graham S, Hopkins P E 2020 ACS Appl. Mater. Interfaces 12 29443

    [47]

    Mortazavi B, Shahrokhi M, Raeisi M, Zhuang X, Pereira L F C, Rabczuk T 2019 Carbon 149 733Google Scholar

    [48]

    Lindsay L, Broido D A, Mingo N 2010 Phys. Rev. B 82 115427Google Scholar

  • 图 1  孔状皱面AlN以及由AlN的孔中引入C, Si原子与碳三角环的C-AlN, Si-AlN和TC-AlN的晶格结构

    Figure 1.  Lattice structure of porous buckled AlN and AlN-C, AlN-Si and AlN-TC, which construct by introducing C, Si atoms and triangular carbon (TC) in AlN.

    图 2  (a) AlN, (b) C-AlN, (c) Si-AlN 与 (d) TC-AlN的电子结构及其态密度. 费米面附近能带的部分电荷分布图插入在电子结构图中

    Figure 2.  Electronic structure and density of states of (a) AlN, (b) C-AlN, (c) Si-AlN, and (d) TC-AlN. Partial charge distributions of the band near the Fermi level are inserted in the electronic structures.

    图 3  孔状皱面AlN与X-AlN (X = C, Si, TC)的光吸收系数

    Figure 3.  Optical absorption coefficients of porous buckled AlN and X-AlN (X = C, Si, TC).

    图 4  孔状皱面AlN与X-AlN (X = C, Si, TC)的(a)在300 K下的晶格热导率, (b) 各声子支相对热导贡献, (d) 声子弛豫时间与(e) 声子群速度平方. (c) TC-AlN前九支声子支非谐散射率在第一布里渊区中的分布. 图(a)中的插图为随温度变化的晶格热导率; 图(b)中的插图为TC-AlN声子支的热导贡献

    Figure 4.  (a) Lattice thermal conductivity at 300 K, (b) relative thermal conductivity contribution of each phonon branch, (d) phonon relaxation time and (e) square of phonon group velocity for porous buckled AlN and X-AlN (X = C, Si, TC). (c) The distribution of anharmonic scattering rates of the first 9 phonon branches of TC-AlN in the first Brillouin zone. The lattice thermal conductivity versus temperature is inserted in panel (a); the thermal conductivity contribution of each phonon branch of TC-AlN is inserted in panel (b).

    图 5  孔状皱面AlN与X-AlN (X = C, Si)随频率变化的(a)声子群速度、(b)非谐散射率和(c)晶格热导率

    Figure 5.  (a) Phonon group velocity, (b) anharmonic scattering rates, and (c) lattice thermal conductivity versus frequency for porous buckled AlN and X-AlN (X = C, Si).

    图 6  在不同应变下X-AlN (X = C, Si, TC)的(a) 300 K下晶格热导率、(b) N—N键键强. TC-AlN的(c)非谐散射率与(d)频率变化的晶格热导. 8%应力下N—N键键长改变量、随应力变化的键长与群速度作为插图分别在图(a), 图(b), 图(c) 中

    Figure 6.  (a) Lattice thermal conductivity at 300 K and (b) N—N bond strength at different strains for X-AlN (X = C, Si and TC). (c) Anharmonic scattering rates and (d) lattice thermal conductivity distribution versus frequency for TC-AlN. The changes of N—N bond length at 8% strain, bond lengths with variation of strains, and group velocity of TC-AlN as the insets of panels (a), (b), and (c), respectively.

    表 1  X-AlN (X = C, Si, TC)的结构参数与电子、结构和热学性质. 其中键角$ \alpha $为孔状空位边缘N—Al—N的角度, 键长为所引入原子X与临近Al成键的键长

    Table 1.  Structural parameters and electronic, structural and thermal properties of X-AlN (X = C, Si, TC). Bond angle $ \alpha $ locates at the N—Al—N near the porous vacancy, and bond length is the distance between the introduced atoms and the neighbor Al.

    结构晶格常数/Å键角$ \alpha / $(°)键长/Å杨氏模量 /(N·m–1)泊松比带隙/eV热导率/(W·m–1·K–1)
    AlN5.12113.9070.570.394.12/间接6.86
    C-AlN5.51122.081.9489.020.500.65/间接17.30
    Si-AlN5.89138.382.4479.280.471.85/间接10.08
    TC-AlN6.08167.631.9690.950.413.95/直接123.75
    DownLoad: CSV
  • [1]

    Robinson J A 2018 APL Mater. 6 058202Google Scholar

    [2]

    Shi L, Xu A, Zhao T 2017 ACS Appl. Mater. Interfaces 9 1987Google Scholar

    [3]

    Cai Y, Liu Y, Xie Y, Zou Y, Gao C, Zhao Y, Liu S, Xu H, Shi J, Guo S, Sun C 2020 APL Mater. 8 021107Google Scholar

    [4]

    叶倩, 沈阳, 袁野, 赵祎峰, 段纯刚 2020 物理学报 69 217710Google Scholar

    Ye Q, Shen Y, Yuan Y, Zhao Y F, Duan C G 2020 Acta Phys. Sin. 69 217710Google Scholar

    [5]

    陈蓉, 王远帆, 王熠欣, 梁前, 谢泉 2022 物理学报 71 127301Google Scholar

    Chen R, Wang Y F, Wang Y X, Liang Q, Xie Q 2022 Acta Phys. Sin. 71 127301Google Scholar

    [6]

    Liang H P, Duan Y F 2022 Chin. Phys. B 31 076301Google Scholar

    [7]

    Lü F, Liang H P, Duan Y F 2023 J. Phys. Chem. Lett. 14 663Google Scholar

    [8]

    Wan X G, Turner A M, Vishwanath A, Savrasov S Y 2011 Phys. Rev. B 83 205101Google Scholar

    [9]

    Liang H P, Duan Y F 2021 Nanoscale 13 11994Google Scholar

    [10]

    Akal L, Kusuki Y, N Shiba, Takayanagi T, Wei Z X 2021 Phys. Rev. Lett. 126 061604Google Scholar

    [11]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A 2004 Science 306 666Google Scholar

    [12]

    卢晓波, 张广宇 2015 物理学报 64 077305Google Scholar

    Lu X B, Zhang G Y 2015 Acta Phys. Sin. 64 077305Google Scholar

    [13]

    Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E, Jarillo-Herrero P 2018 Nature 556 43Google Scholar

    [14]

    Tan X, Xin Z Y, Liu X J, Mu Q G 2013 Adv. Mater. Research 821 841

    [15]

    Shimada K, Sota T, Suzuki K 1998 J. Appl. Phys. 84 4951Google Scholar

    [16]

    Zhang H, Yu S, Liu F, Wang Z, Lu M, Hu X, Chen Y, Xu X 2017 Sci. Chin. Phys. Mech. Astron. 60 044311Google Scholar

    [17]

    冯嘉恒, 唐立丹, 刘邦武, 夏洋, 王冰 2013 物理学报 62 116302Google Scholar

    Feng J H, Tang L D, Liu B W, Xia Y, Wang B 2013 Acta Phys. Sin. 62 116302Google Scholar

    [18]

    林竹, 郭志友, 毕艳君, 董玉成 2009 物理学报 58 191707Google Scholar

    Lin Z, Guo Z Y, Bi Y Z, Dong Y C 2009 Acta phys. Sin. 58 191707Google Scholar

    [19]

    程丽, 王德兴, 张杨, 苏丽萍, 陈淑妍, 王晓峰, 孙鹏, 易重桂 2018 物理学报 67 047101Google Scholar

    Cheng L, Wang D X, Zhang Y, Su L P, Chen S Y, Wang X F, Sun P, Yi C G 2018 Acta Phys. Sin. 67 047101Google Scholar

    [20]

    高小奇, 郭志友, 曹东兴, 张宇飞, 孙慧卿, 邓贝 2010 物理学报 59 3418Google Scholar

    Gao X Q, Guo Z Y, Cao D X, Zhang Y F, Sun H Q, Deng B 2010 Acta Phys. Sin. 59 3418Google Scholar

    [21]

    de Almeida Jr E F, de Brito Mota F, de Castilho C M C, Kakanakova-Georgieva A, Gueorguiev G K 2012 Eur. Phys. J. B 85 48Google Scholar

    [22]

    Jia Y P, Shi Z M, Hou W T, Zang H, Jiang K, Chen Y, Zhang S L, Qi Z B, Wu T, Sun X J, Li D B 2020 Npj 2D Mater. Appl. 4 31Google Scholar

    [23]

    Gürbüz E, Cahangirov S, Durgun E, Ciraci S 2017 Phys. Rev. B 96 205427Google Scholar

    [24]

    Zhou R, Liang H P, Duan Y F, Wei S H 2023 J. Phys. Chem. Lett. 14 737Google Scholar

    [25]

    Sheng X L, Yan Q B, Ye F, Zheng Q R, Su G 2011 Phys. Rev. Lett. 106 155703Google Scholar

    [26]

    Zhang J, Wang R, Zhu X, Pan A, Han C, Li X, Zhao D, Ma C, Wang Q, Su H, Niu C 2017 Nat. Commun. 8 683Google Scholar

    [27]

    Liu W H, Luo J W, Li S, Wang L W 2020 Phys. Rev. B 102 184308Google Scholar

    [28]

    Liang H P, Zhong H Z, Huang S, Duan Y F 2021 J. Phys. Chem. Lett. 12 10975Google Scholar

    [29]

    Oganov A R, Ma Y, Lyahov A O, Valle M, Gatti C 2010 Rev. Mineral. Geochem. 71 271Google Scholar

    [30]

    Oganov A R, Lyahov A O, Valle M 2011 Acc. Chem. Res. 44 227Google Scholar

    [31]

    Oganov A R, Class C W 2006 J. Chem. Phys. 124 244704Google Scholar

    [32]

    Hohenberg P, Kohn W 1964 Phys. Rev. 136 B864Google Scholar

    [33]

    Kohn W, Sham L J 1965 Phys. Rev. 140 A1133Google Scholar

    [34]

    Kresse H, Hafner J 1993 Phys. Rev. B 47 558Google Scholar

    [35]

    Kresse H, Hafner J 1994 Phys. Rev. B 49 14251Google Scholar

    [36]

    Kresse H, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [37]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [38]

    Heyd J, Scueria G E, Ernzerhof M 2003 J. Chem. Phys. 118 8207Google Scholar

    [39]

    Jia W, Fu J, Cao Z, Wang L, Chi X, Gao W, Wang L W 2013 Comput. Phys. Commun. 251 102Google Scholar

    [40]

    Jia W, Cao Z, Wang L, Fu J, Chi X, Gao W, Wang L W 2013 Comput. Phys. Commun. 184 9Google Scholar

    [41]

    Atsush T, Isa T 2015 Scr. Mater. 108 1Google Scholar

    [42]

    Li W, Carrete J, Katcho N A, Mingo N 2014 Comput. Phys. Commun. 185 1747Google Scholar

    [43]

    Homayoun J, Bahram A R, Mahdi F 2018 Solid State Commun. 282 21Google Scholar

    [44]

    程正富, 郑瑞伦 2016 物理学报 65 104701Google Scholar

    Cheng Z F, Zheng R L 2016 Acta Phys. Sin. 65 104701Google Scholar

    [45]

    Lü F, Liang H P, Duan Y F 2023 Phys. Rev. B 107 045422Google Scholar

    [46]

    Koh Y R, Mamun A, Bin Hoque M S, Liu Z Y, Bai T Y, Hussain K, Liao M E, Li R Y, Gaskins J T, Giri A, Tomko J, Braun J L, Gaevski M, Lee E, Yates L, Goorsky M S, Luo T F, Khan A, Graham S, Hopkins P E 2020 ACS Appl. Mater. Interfaces 12 29443

    [47]

    Mortazavi B, Shahrokhi M, Raeisi M, Zhuang X, Pereira L F C, Rabczuk T 2019 Carbon 149 733Google Scholar

    [48]

    Lindsay L, Broido D A, Mingo N 2010 Phys. Rev. B 82 115427Google Scholar

  • [1] Li Ji, Chen Liang, Feng Mang. Research progress of heat transport in trapped-ion crystals. Acta Physica Sinica, 2024, 73(3): 033701. doi: 10.7498/aps.73.20231719
    [2] Miao Rui-Xia, Xie Miao-Chun, Cheng Kai, Li Tian-Tian, Yang Xiao-Feng, Wang Ye-Fei, Zhang De-Dong. Effect of Te doping on oxidation resistance and electronic structure of two-dimensional InSe. Acta Physica Sinica, 2023, 72(12): 123101. doi: 10.7498/aps.72.20230004
    [3] Guo Rui-Ping, Yu Hong-Yi. Position- and momentum-dependent interlayer couplings in two-dimensional semiconductor moiré superlattices. Acta Physica Sinica, 2023, 72(2): 027302. doi: 10.7498/aps.72.20222046
    [4] Cao Yi-Gang, Fu Meng-Meng, Yang Xi-Chang, Li Deng-Feng, Wang Xiao-Xia. Effect of thermal conduction on Kelvin-Helmholtz instability in straight pipe with different cross-sections. Acta Physica Sinica, 2022, 71(9): 094701. doi: 10.7498/aps.71.20211155
    [5] Su Rui-Xia, Huang Xia, Zheng Zhi-Gang. Lattice wave solution and its dispersion relation of two coupled Frenkel-Kontorova chains. Acta Physica Sinica, 2022, 71(15): 154401. doi: 10.7498/aps.71.20212362
    [6] Fang Wen-Yu, Chen Yue, Ye Pan, Wei Hao-Ran, Xiao Xing-Lin, Li Ming-Kai, Ahuja Rajeev, He Yun-Bin. Elastic constants, electronic structures and thermal conductivity of monolayer XO2 (X = Ni, Pd, Pt). Acta Physica Sinica, 2021, 70(24): 246301. doi: 10.7498/aps.70.20211015
    [7] Xiong Zi-Qian, Zhang Peng-Cheng, Kang Wen-Bin, Fang Wen-Yu. Study on the electronic structure and photocatalytic properties of a novel monolayer TiO2. Acta Physica Sinica, 2020, 69(16): 166301. doi: 10.7498/aps.69.20200631
    [8] Wang Xin, Li Hua, Dong Zheng-Chao, Zhong Chong-Gui. Magnetism and electronic properties of LiFeAs superconducting thin filma under two-dimensional strains effect. Acta Physica Sinica, 2019, 68(2): 027401. doi: 10.7498/aps.68.20180957
    [9] Ao Hong-Rui, Chen Yi, Dong Ming, Jiang Hong-Yuan. Multiphysics-based simulation on heat conduction mechanism of TFC head and its influencing factors. Acta Physica Sinica, 2014, 63(3): 034401. doi: 10.7498/aps.63.034401
    [10] Huang You-Lin, Hou Yu-Hua, Zhao Yu-Jun, Liu Zhong-Wu, Zeng De-Chang, Ma Sheng-Can. Influences of strain on electronic structure and magnetic properties of CoFe2O4 from first-principles study. Acta Physica Sinica, 2013, 62(16): 167502. doi: 10.7498/aps.62.167502
    [11] Wen Juan-Hui, Yang Qiong, Cao Jue-Xian, Zhou Yi-Chun. Strain control of the leakage current of the ferroelectric thin films. Acta Physica Sinica, 2013, 62(6): 067701. doi: 10.7498/aps.62.067701
    [12] Gao Tan-Hua, Wu Shun-Qing, Hu Chun-Hua, Zhu Zi-Zhong. The structural stability and electronic properties of monolayer BC2N. Acta Physica Sinica, 2011, 60(12): 127305. doi: 10.7498/aps.60.127305
    [13] Gao Xiu-Yun, Zheng Zhi-Gang. Ratcheting thermal conduction in one-dimensional homogeneous Morse lattice systems. Acta Physica Sinica, 2011, 60(4): 044401. doi: 10.7498/aps.60.044401
    [14] Li Jin, Gui Gui, Sun Li-Zhong, Zhong Jian-Xin. Structure transition of two-dimensional hexagonal BN under large uniaxial strain. Acta Physica Sinica, 2010, 59(12): 8820-8828. doi: 10.7498/aps.59.8820
    [15] Zhou Gui-Yao, Hou Zhi-Yun, Pan Pu-Feng, Hou Lan-Tian, Li Shu-Guang, Han Ying. Temperature distribution of microstructure fiber preform during fiber drawing. Acta Physica Sinica, 2006, 55(3): 1271-1275. doi: 10.7498/aps.55.1271
    [16] Pan Zhi-Jun, Zhang Lan-Ting, Wu Jian-Sheng. A first-principle study of electronic and geometrical structures of semiconducting β-FeSi2 with doping. Acta Physica Sinica, 2005, 54(11): 5308-5313. doi: 10.7498/aps.54.5308
    [17] Wang Gui-Chun, Yuan Jian-Min. Structure and electronic properties of the low-dimensional copper systems. Acta Physica Sinica, 2003, 52(4): 970-977. doi: 10.7498/aps.52.970
    [18] Qin Ying, Wang Xiao-Gang, Dong Chuang, Hao Sheng-Zhi, Liu Yue, Zou Jian-Xin, Wu Ai-Min, Guan Qing-Feng. Temperature field and formation of crater on the surface induced by high curren t pulsed electron beam bombardment. Acta Physica Sinica, 2003, 52(12): 3043-3048. doi: 10.7498/aps.52.3043
    [19] TAN MING-QIU, TAO XIANG-MING. STUDY ON THE ELECTRONIC STRUCTURE OF HIGH-TC SUPERCONDUCTOR MgB2. Acta Physica Sinica, 2001, 50(6): 1193-1196. doi: 10.7498/aps.50.1193
    [20] WANG LI-MIN, LUO YING, MA BEN-KUN. ELECTRONIC STRUCTURE OF DOUBLE QUANTUM-DOT MOLECULE. Acta Physica Sinica, 2001, 50(2): 278-286. doi: 10.7498/aps.50.278
  • supplement 096301-20230116补充材料.pdf supplement
Metrics
  • Abstract views:  4420
  • PDF Downloads:  99
  • Cited By: 0
Publishing process
  • Received Date:  29 January 2023
  • Accepted Date:  17 February 2023
  • Available Online:  16 March 2023
  • Published Online:  05 May 2023

/

返回文章
返回