Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Study of elastic anisotropy for 1, 3, 5-trinitro-1, 3, 5-triazacyclohexane by supramolecular structural unit

Wei Fu-Jing Zhang Wei-Bin Dong Chuang Chen Hua

Citation:

Study of elastic anisotropy for 1, 3, 5-trinitro-1, 3, 5-triazacyclohexane by supramolecular structural unit

Wei Fu-Jing, Zhang Wei-Bin, Dong Chuang, Chen Hua
PDF
HTML
Get Citation
  • The relation between elastic property and crystal structure provides a foundation for designing new materials with desired properties and understanding the chemical decomposition and explosion of energetic materials. The supramolecular structural unit is proposed as the smallest chemical unit to quantitatively characterize the elastic anisotropy of 1, 3, 5-trinitro-1, 3, 5-triazacyclohexane (RDX). The supramolecular structural unit refers to the nearest-neighbor coordination polyhedron of one molecule. The supramolecular structural unit of RDX is composed of 15 molecules, and analyzed by the total molecular number density and the density of intermolecular interactions. The elastic modulus model is established on the assumption that 1) the RDX molecule is of sphere and rigid-body; 2) the intermolecular interaction is regarded as a linear spring, i.e. it is described by a bond-spring model; 3) the molecules are close-packed in the series mode. The elastic modulus model based on the supramolecular structural unit demonstrates that the elastic modulus is intrinsically determined by the total molecular number, the equilibrium distance of the molecular pair, the intermolecular force constant, and the angle between the intermolecular non-bonding interaction and the normal to crystal face. The intermolecular force constant is calculated as the second derivative of the intermolecular interaction with respect to the equilibrium centroid distance. The intermolecular interaction is expressed as the summation of van der Waals and electrostatic interactions calculated by COMPASS (condensed-phase optimized molecular potentials for atomistic simulation studies) II forcefield. The calculated elastic moduli are 21.7, 17.1, 20.1, 19.1, and 15.3 GPa for RDX (100), (010), (001), (210), and (021) crystal faces, respectively. The calculation results are consistent with the theoretical values computed by the density functional theory. Excluding RDX(001), the calculated elastic moduli accord with the experimental results measured by the resonant ultrasound spectroscopy (RUS), impulsive stimulated thermal scattering, Brillouin spectroscopy, and nanoindentation methods. The theoretical value (20.1 GPa) of RDX(001) overestimates the experimental values in a range of 15.9–16.6 GPa. The reason can be attributed to the rigid-body approximation for flexible molecules, in which are ignored the motion and deformation of the ring and NO2 groups when the external loads are applied to RDX(001). The results suggest that the supramolecular structural unit can be the smallest chemical unit to quantitatively characterize the elastic anisotropy of RDX and the elastic anisotropy is mainly due to the angle between the intermolecular interaction and the normal to crystal face.
      Corresponding author: Dong Chuang, dong@dlut.edu.cn ; Chen Hua, chenhua9@caep.cn
    [1]

    Mishra M K, Sanphui P, Ramamurty U, Desiraju G 2014 Cryst. Growth. Des. 14 3054Google Scholar

    [2]

    Sunil S L, Kiran M, Ramamurty U, Varughese S 2018 Chem. Eur. J. 25 526Google Scholar

    [3]

    Armstrong R, Elban W L 2006 Mater. Sci. Technol. 22 381Google Scholar

    [4]

    王鹏举, 范俊宇, 苏艳, 赵纪军 2020 物理学报 69 238702Google Scholar

    Wang P J, Fan J Y, Su Y, Zhao J J 2020 Acta Phys. Sin. 69 238702Google Scholar

    [5]

    Ramos K J, Hooks D E, Bahr D F 2009 Philos. Mag. 89 2381Google Scholar

    [6]

    Haussühl S 2001 Z. Krist-Cryst. Mater. 216 339Google Scholar

    [7]

    Schwarz R, Hooks D, Dick J, Archuleta J, Martinez A 2005 J. Appl. Phys. 98 056106Google Scholar

    [8]

    Sun B, Winey J, Hemmi N, Dreger Z, Zimmerman K, Gupta Y, Torchinsky D H, Nelson K A 2008 J. Appl. Phys. 104 073517Google Scholar

    [9]

    Bolme C A, Ramos K J 2014 J. Appl. Phys. 116 77Google Scholar

    [10]

    Weingarten N S, Sausa R C 2015 J. Phys. Chem. A 119 9338Google Scholar

    [11]

    Taylor D E 2014 J. Appl. Phys. 116 053513Google Scholar

    [12]

    Liu J, Zeng Q, Zhang Y L, Zhang C Y 2016 J. Phys. Chem. C 120 15198Google Scholar

    [13]

    Shi Y B, Bai L F, Li J H, Sun G A, Gong J, Ju X 2019 J. Mol. Model. 25 299Google Scholar

    [14]

    Zhu S H, Qin H, Zeng W, Liu F S, Tang B, Liu Q J, Li R X, Gan Y D 2020 Philos Mag. 100 1015Google Scholar

    [15]

    Fan J Y, Su Y, Zhang Q Y, Zhao J J 2019 Comp. Mater. Sci. 161 379Google Scholar

    [16]

    Hang G Y, Yu W L, Wang T, Wang J T, Li Z 2017 J. Mol. Struct. 1141 577Google Scholar

    [17]

    Sun H J 1998 J. Phys. Chem. B 102 7338Google Scholar

    [18]

    Spackman P R, Grosjean A, Thomas S P, Karothu D P, Naumov P, Spackman M A 2022 Angew. Chem. Int. Ed. 61 e202110716Google Scholar

    [19]

    Day G M, Price S L, Leslie M 2001 Cryst. Growth. Des. 1 13Google Scholar

    [20]

    Zhang S, Wang Q, Dong C 2021 J. Mater. Inf. 1 8Google Scholar

    [21]

    Dong D D, Zhang S, Wang Z J, Dong C, Haeussler P 2016 Mater. Design. 96 115Google Scholar

    [22]

    Wang Z R, Qiang J B, Wang Y M, Wang Q, Dong D D, Dong C 2016 Acta Mater. 111 366Google Scholar

    [23]

    Ma Y, Wang Q, Jiang B B, Li C L, Hao J M, Li X N, Dong C, Nieh T G 2018 Acta Mater. 147 213Google Scholar

    [24]

    Dong D D, Cao Z M, Han G, Dong C 2021 AIP. Adv. 11 035140Google Scholar

    [25]

    Chen H, Luo L J, Qiang J B, Wang Y M, Dong C 2014 Philos. Mag. 94 1463Google Scholar

    [26]

    Friedel J 1958 II Nuovo. Cimento. 7 287Google Scholar

    [27]

    Dong C, Wang Z J, Zhang S, Wang Y M 2019 Int. Mater. Rev. 65 286Google Scholar

    [28]

    Li T, Morris K R, Park K 2000 J. Phys. Chem. B 104 2019Google Scholar

    [29]

    Bandyopadhya R, Grant D 2002 Pharm. Res. 19 491Google Scholar

    [30]

    Zaccone A, Lattuada M, Wu H, Morbidelli M 2007 J. Chem. Phys. 127 174512Google Scholar

    [31]

    Weiner J H 1984 J. Appl. Mech. 51 707Google Scholar

    [32]

    Gao C, Yang L, Zeng Y, Wang X, Zhang C, Dai R, Wang Z, Zheng X, Zhang Z 2017 J. Phys. Chem. C 121 17586Google Scholar

    [33]

    Accelrys. Materials Studio Release Notes, Release 5.5, Accelrys Software. Inc. San Diego 2010, https://www.3ds.com/products-services/biovia/ [2022-8-10]

    [34]

    Desiraju G R 2013 J. Am. Chem. Soc. 135 9952Google Scholar

    [35]

    Bu R P, Xiong Y, Wei X F, Li H Z, Zhang C Y 2019 Cryst. Growth. Des. 19 5981Google Scholar

    [36]

    Konovalova I S, Shishkina S V, Bani-Khaled G, Muzyka E N, Boyko A N 2019 Cryst. Eng. Comm. 21 2908Google Scholar

    [37]

    Eckhardt C J, Gavezzotti A 2007 J. Phys. Chem. B 111 3430Google Scholar

    [38]

    Peng Q, Rahul, Wang G Y, Liu G R, Grimme S, De S 2015 J. Phys. Chem. B 119 5896Google Scholar

  • 图 1  弹性模量模型示意图 (a) 键-弹簧模型; (b) RDX的超分子结构单元; (c) 未变形 (即平衡状态)时的分子对构型; (d) 外界载荷作用下, 发生形变后的分子对构型. 其中, 黄色分子代表RDX超分子结构单元的中心分子

    Figure 1.  Schematic diagram of the elastic modulus model: (a) Bond-spring model; (b) the supramolecular structural unit of RDX; (c) molecular pair in the un-deformed (i.e., equilibrium position) configuration; (d) molecular pair in the deformed configuration under the external loads. The yellow molecule represents the central molecule of the supramolecular structural unit of RDX.

    图 2  (a) 5×5×5的RDX超晶胞, 其中A, B, O/C代表超晶胞的晶轴; (b) RDX的总分子数密度和分子间非键能密度曲线

    Figure 2.  (a) The 5×5×5 supercell structure of RDX, where A, B, and O/C refer to the crystal axis of the supercell; (b) the radial total molecular number density and the density of intermolecular interaction curves of RDX.

    图 3  (a) RDX的超分子结构单元, 其中黄色分子为中心分子; (b) RDX超分子结构单元内不同分子对的分子间非键能曲线

    Figure 3.  (a) Supramolecular structural unit of RDX, and the yellow molecule represents the central molecule; (b) the intermolecular interaction curves of molecular pairs extracted from the supramolecular structural unit of RDX.

    表 1  分子间非键能曲线确定的平衡距离R0[12]、分子间作用能Elow和分子间力常数k, 以及真实晶胞中的平衡距离r0和分子间非键能E0[37]

    Table 1.  Equilibrium distance R0[12], the lowest intermolecular interaction Elow, and intermolecular force constant k obtained by intermolecular non-bonded interaction curves, the equilibrium distance r0 and intermolecular non-bonded interaction E0[37] in the actual crystal lattice.

    r0/nmR0/nm[12]R0/nmElow/(kcal·mol–1)E0/(kcal·mol–1)[37]k/(N·m–1)
    0.44150440.426030.428–6.86–6.2519.985
    0.64475230.633850.660–1.57–2.687.211
    0.65509150.647000.640–3.22–2.686.729
    0.69444330.687250.691–3.94–3.3510.677
    0.72919930.708890.737–4.46–5.589.546
    0.72920550.710–6.39–5.8018.522
    0.81448250.769220.760–2.285.045
    0.81469580.754–4.7613.018
    DownLoad: CSV

    表 2  RDX超分子结构单元内分子对的平衡位置R0、分子间非键能与晶面法线(hkl )的夹角余弦值cosθ和分子间力常数k

    Table 2.  Equilibrium distance R0 of the molecular pair, the cosine value of the angle cosθ between the intermolecular non-bonded interactions and the normal to (hkl ), and the intermolecular force constants k within the RDX supramolecular structural unit.

    R0/nmk/(N·m–1)cosθ (021)cosθ (210)cosθ (001)cosθ (100)cosθ (010)
    0.42819.9850.0676–0.1388–0.7174–0.94910
    0.6607.211–0.0622–0.30310.83050.94910
    0.6607.211–0.8999–0.3031–0.8305–0.26450.2695
    0.6406.729–0.5944–0.75660.3339–0.48800.4972
    0.6406.7290.93120.20480.33390.6084–0.7936
    0.69110.6770.1588–0.79630.3150.60840.7936
    0.69110.6770.15880.79630.3150–0.5571
    0.7379.546–0.68530.078600–0.5571
    0.7379.5460.68530.942300.60840.3011
    0.71018.5220.63030.67430.73430.60840.3011
    0.71018.522–0.11030.6743–0.7343–0.8090–0.4409
    0.7605.0450.6997–0.07520.92600.8090–0.4409
    0.75413.018–0.5768–0.9186–0.3888–0.3289–0.8834
    0.75413.018–0.57680.4389–0.3888–0.32890.8834
    DownLoad: CSV

    表 3  由不同实验方法和理论计算得到的RDX多个晶面的弹性模量. 其中, ERUS, EISTS, EBriEnano分别代表由超声共振谱、脉冲激热散射法、布里渊散射法和纳米压痕法实验测定的弹性模量值; EDFTEcal为密度泛函理论和超分子结构单元法的计算值

    Table 3.  Elastic moduli of multiple crystal faces for RDX are obtained by experimental and theoretical calculations. ERUS, EISTS, EBri, and Enano refer to the elastic moduli experimentally measured by resonant ultrasound spectroscopy, impulsive stimulated thermal scattering, Brillouin spectroscopy, and nanoindentation approaches, respectively. EDFT and Ecal represent the elastic moduli theoretically calculated by the density functional theory and the supramolecular structural unit, respectively.

    RDXERUS/GPa[7]EISTS/GPa[8]EBri/GPa[9]Enano/GPa[5]EDFT/GPa[15]Ecal/GPa
    (100)21.521.021.525.721.7
    (010)17.216.416.318.817.1
    (001)16.615.916.216.220.520.1
    (210)20.520.020.321.022.819.1
    (021)15.514.914.918.216.315.3
    DownLoad: CSV
  • [1]

    Mishra M K, Sanphui P, Ramamurty U, Desiraju G 2014 Cryst. Growth. Des. 14 3054Google Scholar

    [2]

    Sunil S L, Kiran M, Ramamurty U, Varughese S 2018 Chem. Eur. J. 25 526Google Scholar

    [3]

    Armstrong R, Elban W L 2006 Mater. Sci. Technol. 22 381Google Scholar

    [4]

    王鹏举, 范俊宇, 苏艳, 赵纪军 2020 物理学报 69 238702Google Scholar

    Wang P J, Fan J Y, Su Y, Zhao J J 2020 Acta Phys. Sin. 69 238702Google Scholar

    [5]

    Ramos K J, Hooks D E, Bahr D F 2009 Philos. Mag. 89 2381Google Scholar

    [6]

    Haussühl S 2001 Z. Krist-Cryst. Mater. 216 339Google Scholar

    [7]

    Schwarz R, Hooks D, Dick J, Archuleta J, Martinez A 2005 J. Appl. Phys. 98 056106Google Scholar

    [8]

    Sun B, Winey J, Hemmi N, Dreger Z, Zimmerman K, Gupta Y, Torchinsky D H, Nelson K A 2008 J. Appl. Phys. 104 073517Google Scholar

    [9]

    Bolme C A, Ramos K J 2014 J. Appl. Phys. 116 77Google Scholar

    [10]

    Weingarten N S, Sausa R C 2015 J. Phys. Chem. A 119 9338Google Scholar

    [11]

    Taylor D E 2014 J. Appl. Phys. 116 053513Google Scholar

    [12]

    Liu J, Zeng Q, Zhang Y L, Zhang C Y 2016 J. Phys. Chem. C 120 15198Google Scholar

    [13]

    Shi Y B, Bai L F, Li J H, Sun G A, Gong J, Ju X 2019 J. Mol. Model. 25 299Google Scholar

    [14]

    Zhu S H, Qin H, Zeng W, Liu F S, Tang B, Liu Q J, Li R X, Gan Y D 2020 Philos Mag. 100 1015Google Scholar

    [15]

    Fan J Y, Su Y, Zhang Q Y, Zhao J J 2019 Comp. Mater. Sci. 161 379Google Scholar

    [16]

    Hang G Y, Yu W L, Wang T, Wang J T, Li Z 2017 J. Mol. Struct. 1141 577Google Scholar

    [17]

    Sun H J 1998 J. Phys. Chem. B 102 7338Google Scholar

    [18]

    Spackman P R, Grosjean A, Thomas S P, Karothu D P, Naumov P, Spackman M A 2022 Angew. Chem. Int. Ed. 61 e202110716Google Scholar

    [19]

    Day G M, Price S L, Leslie M 2001 Cryst. Growth. Des. 1 13Google Scholar

    [20]

    Zhang S, Wang Q, Dong C 2021 J. Mater. Inf. 1 8Google Scholar

    [21]

    Dong D D, Zhang S, Wang Z J, Dong C, Haeussler P 2016 Mater. Design. 96 115Google Scholar

    [22]

    Wang Z R, Qiang J B, Wang Y M, Wang Q, Dong D D, Dong C 2016 Acta Mater. 111 366Google Scholar

    [23]

    Ma Y, Wang Q, Jiang B B, Li C L, Hao J M, Li X N, Dong C, Nieh T G 2018 Acta Mater. 147 213Google Scholar

    [24]

    Dong D D, Cao Z M, Han G, Dong C 2021 AIP. Adv. 11 035140Google Scholar

    [25]

    Chen H, Luo L J, Qiang J B, Wang Y M, Dong C 2014 Philos. Mag. 94 1463Google Scholar

    [26]

    Friedel J 1958 II Nuovo. Cimento. 7 287Google Scholar

    [27]

    Dong C, Wang Z J, Zhang S, Wang Y M 2019 Int. Mater. Rev. 65 286Google Scholar

    [28]

    Li T, Morris K R, Park K 2000 J. Phys. Chem. B 104 2019Google Scholar

    [29]

    Bandyopadhya R, Grant D 2002 Pharm. Res. 19 491Google Scholar

    [30]

    Zaccone A, Lattuada M, Wu H, Morbidelli M 2007 J. Chem. Phys. 127 174512Google Scholar

    [31]

    Weiner J H 1984 J. Appl. Mech. 51 707Google Scholar

    [32]

    Gao C, Yang L, Zeng Y, Wang X, Zhang C, Dai R, Wang Z, Zheng X, Zhang Z 2017 J. Phys. Chem. C 121 17586Google Scholar

    [33]

    Accelrys. Materials Studio Release Notes, Release 5.5, Accelrys Software. Inc. San Diego 2010, https://www.3ds.com/products-services/biovia/ [2022-8-10]

    [34]

    Desiraju G R 2013 J. Am. Chem. Soc. 135 9952Google Scholar

    [35]

    Bu R P, Xiong Y, Wei X F, Li H Z, Zhang C Y 2019 Cryst. Growth. Des. 19 5981Google Scholar

    [36]

    Konovalova I S, Shishkina S V, Bani-Khaled G, Muzyka E N, Boyko A N 2019 Cryst. Eng. Comm. 21 2908Google Scholar

    [37]

    Eckhardt C J, Gavezzotti A 2007 J. Phys. Chem. B 111 3430Google Scholar

    [38]

    Peng Q, Rahul, Wang G Y, Liu G R, Grimme S, De S 2015 J. Phys. Chem. B 119 5896Google Scholar

  • [1] Wan Fa-Qi, Ma Yan-Ping, Dong Dan-Dan, Ding Wan-Yu, Jiang Hong, Dong Chuang, He Jian-Xiong. Molecule-like structural units in silicate-glass-forming oxides. Acta Physica Sinica, 2020, 69(13): 136101. doi: 10.7498/aps.69.20191892
    [2] Sheng Yu, Zhang Nan, Wang Kai-You, Ma Xing-Qiao. Demonstration of four-state memory structure with perpendicular magnetic anisotropy by spin-orbit torque. Acta Physica Sinica, 2018, 67(11): 117501. doi: 10.7498/aps.67.20180216
    [3] Xiao Jia-Xing, Lu Jun, Zhu Li-Jun, Zhao Jian-Hua. Perpendicular magnetic properties of ultrathin L10-Mn1.67Ga films grown by molecular-beam epitaxy. Acta Physica Sinica, 2016, 65(11): 118105. doi: 10.7498/aps.65.118105
    [4] Liu Ben-Qiong, Song Jian-Ming, Zhang Wei-Bin, Luo Wei, Wang Yan, Xia Yuan-Hua, Zong He-Hou, Gao Guo-Fang, Sun Guang-Ai. Inelastic neutron scattering and ab initio studies of cyclotrimethylenetrinitramine. Acta Physica Sinica, 2016, 65(4): 047802. doi: 10.7498/aps.65.047802
    [5] Yu Tao, Liu Yi, Zhu Zheng-Yong, Zhong Hui-Cai, Zhu Kai-Gui, Gou Cheng-Ling. Influence of Mo capping layer on magnetic anisotropy of MgO/CoFeB/Mo. Acta Physica Sinica, 2015, 64(24): 247504. doi: 10.7498/aps.64.247504
    [6] Wang Ri-Xing, Xiao Yun-Chang, Zhao Jing-Li. Ferromagnetic resonance in spin valve structures with perpendicular anisotropy. Acta Physica Sinica, 2014, 63(21): 217601. doi: 10.7498/aps.63.217601
    [7] Zhang Shou-Yu, Bao Shang-Lian, Kang Xiao-Jian, Gao Song. A new approach to depict anisotropy diffusion of water molecule in vivo. Acta Physica Sinica, 2013, 62(20): 208703. doi: 10.7498/aps.62.208703
    [8] Cheng He-Ping, Dan Jia-Kun, Huang Zhi-Meng, Peng Hui, Chen Guang-Hua. First-principles study on the electronic structure and optical properties of RDX. Acta Physica Sinica, 2013, 62(16): 163102. doi: 10.7498/aps.62.163102
    [9] Gong Bo-Yi, Zhou Xin, Zhao Xiao-Peng. Numerical study of three-dimensional isotropic left-handed metamaterials at visible frequencies. Acta Physica Sinica, 2011, 60(4): 044101. doi: 10.7498/aps.60.044101
    [10] Wan Yong, Han Wen-Juan, Liu Jun-Hai, Xia Lin-Hua, Xavier Mateos, Valentin Petrov, Zhang Huai-Jin, Wang Ji-Yang. Anisotropy in spectroscopic and laser properties of monoclinic Yb:KLu(WO4)2 crystal. Acta Physica Sinica, 2009, 58(1): 278-284. doi: 10.7498/aps.58.278.1
    [11] He An-Min, Qin Cheng-Sen, Shao Jian-Li, Wang Pei. Molecular dynamics simulation of the anisotropy of surface melting of metal Al. Acta Physica Sinica, 2009, 58(4): 2667-2674. doi: 10.7498/aps.58.2667
    [12] Wu Chao, Xie Zi-Li, Zhang Rong, Zhang Zeng, Liu Bin, Li Yi, Fu De-Yi, Xiu Xiang-Qian, Han Ping, Shi Yi, Zheng You-Dou. Structural and optical in-plane anisotropy of m-plane GaN. Acta Physica Sinica, 2008, 57(11): 7190-7193. doi: 10.7498/aps.57.7190
    [13] Meng Fan-Yi, Wu Qun, Fu Jia-Hui, Gu Xue-Mai, Li Le-Wei. Resonance characteristics of a three-dimensional anisotropic metamaterial bilayer. Acta Physica Sinica, 2008, 57(10): 6213-6220. doi: 10.7498/aps.57.6213
    [14] Shi Fang-Ye, Fang Yun-Zhang, Sun Huai-Jun, Zheng Jin-Ju, Lin Gen-Jin, Wu Feng-Min. Mesostructure investigation of the transverse magnetic anisotropy field in stress-annealed Fe-based nanocrystalline ribbons. Acta Physica Sinica, 2007, 56(7): 4009-4016. doi: 10.7498/aps.56.4009
    [15] Xu Xiao-Yong, Pan Jing, Hu Jing-Guo. Configuration of the antiferromagnetic magnetization and the exchange anisotropy in exchange-biased bilayers. Acta Physica Sinica, 2007, 56(9): 5476-5482. doi: 10.7498/aps.56.5476
    [16] Lin Bao-Qin, Xu Li-Jun, Yuan Nai-Chang. Uniplanar compact photonic band-gap on uniaxial anisotropic substrate. Acta Physica Sinica, 2005, 54(8): 3711-3715. doi: 10.7498/aps.54.3711
    [17] Zhang Hai-Yan, Liu Zhen-Qing, Ma Xiao-Song. The influence of interface layer characteristics on Lamb waves in layered anisot ropic media. Acta Physica Sinica, 2003, 52(10): 2492-2499. doi: 10.7498/aps.52.2492
    [18] . Acta Physica Sinica, 2000, 49(2): 355-360. doi: 10.7498/aps.49.355
    [19] WANG WEN-JUN, XU JIAN-HUA, LU XIANG-ZE, WANG GONG-MING, WANG WEN-CHENG. PERTURBATION THEORY AND EXPERIMENTAL STUDIES ON ANISOTROPY OF ORGANIC MOLECULAR FILMS. Acta Physica Sinica, 1999, 48(6): 1179-1184. doi: 10.7498/aps.48.1179
    [20] LU QUAN-KANG, CHEN GUO-RANG, WANG QIAN, XIONG XlAO-MING, JIN YONG, TANG MING. THE FORM FACTOR OF RADIATION SCATTERING IN AN ANISOTROPIC PLASMA. Acta Physica Sinica, 1983, 32(5): 618-626. doi: 10.7498/aps.32.618
Metrics
  • Abstract views:  3640
  • PDF Downloads:  59
  • Cited By: 0
Publishing process
  • Received Date:  11 August 2022
  • Accepted Date:  17 March 2023
  • Available Online:  21 March 2023
  • Published Online:  05 May 2023

/

返回文章
返回