-
Diffusion anisotropy indices (DAIs) are parameters derived from diffusion tensor imaging (DTI) data which describe the morphological characteristics of diffusion tensor within a specific range. DAIs are the measurements used to quantitatively describe the diffusion direction and strength of the hydrone in vivo, so that DAIs enable one to indirectly probe the internal structure of an imaging subject. The reliability of DAIs is of great importance for the analysis and interpretation of DTI data. Based on the geometric characteristic of the diffusion tensor ellipsoid, we propose a new DAI, the ellipsoidal geometric ratio (EGR), to describe the hydrone diffusion anisotropy property. The analysis results of Monte Carlo simulation and human brain DTI data show that the EGR has better contrast and robustness than fractional anisotropy, the most commonly used DAI, and ellipsoidal area ratio at different noise levels. Furthermore, since EGR makes full use of the ellipsoidal volume information, it is more robust than any other DAIs in the fiber crossing case. EGR may be a superior measure of diffusion anisotropy both in quantifying deep white matter with relatively high anisotropy and pericortical white matter with relatively low anisotropy.
-
Keywords:
- diffusion coefficient /
- diffusion anisotropy /
- diffusion tensor imaging /
- ellipsoidal geometric ratio
[1] Wedeen V J, Rosene D L, Wang R, Dai G, Mortazavi F, Hagmann P, Kaas J H, Tseng W Y 2012 Science 335 1628
[2] Basser P J, Pierpaoli C 1996 J. Mag. Reson. B 111 209
[3] Hasan K M, Alexander A L, Narayana P A 2004 Magn. Reson. Med. 51 413
[4] Xu D, Cui J, Bansal R, Hao X, Liu J, Chen W, Peterson B S 2009 Magn. Reson. Imag. 27 311
[5] Kang X, Herron T J, Woods D L 2010 Magn. Reson. Imag. 28 546
[6] Skare S, Li T, Nordell B, Ingvar M 2000 Magn. Reson. Imag. 18 659
[7] Klamkin M 1976 Am. Math. Mon. 83 478
[8] Kim Y C, Narayanan S S, Nayak K S 2011 Magn. Reson. Med. 65 1365
[9] Shen Y, Larkman D J, Counsell S, Pu I M, Edwards D, Hajnal J V 2004 Magn. Reson. Med. 52 1184
[10] Fischl B, Sereno M I, Tootell R B, Dale A M 1999 Hum. Brain. Mapp. 8 272
[11] Thompson P, Toga A W 1996 IEEE Trans. Med. Imag. 15 402
[12] van Essen D C, Drury H A, Joshi S, Miller M I 1998 Proc. Natl. Acad. Sci. USA 95 788
[13] Desai R, Liebenthal E, Possing E T, Waldron E, Binder J R 2005 Neuroimage 26 1019
[14] Kang X, Bertrand O, Alho K, Yund E W, Herron T J, Woods D L 2004 Neuroimage 22 1657
[15] van Essen D C 2005 Neuroimage 28 635
[16] Dale A M, Fischl B, Sereno M I 1999 Neuroimage 9 1790
[17] Skare S, Hedehus M, Moseley M E, Li T Q 2000 J. Magn. Reson. 147 340
[18] Gao S, Zu Z L, Bao S L 2008 Chin. Phys. Lett. 25 325
[19] Wang X Y, Lu L, Cheng H Y, Li G Y, Wang H Z, Xu L F, Yu J, Huang Q M, Huang Y, Zhang X L, Wang H 2010 Acta. Phys. Sin. 59 7463 (in Chinese) [王晓琰, 陆伦, 程红岩, 李鲠颖, 汪红志, 许凌峰, 俞捷, 黄清明, 黄勇, 张学龙, 王鹤 2010 物理学报 59 7463]
[20] Bao S L, Du J, Gao S 2013 Acta Phys. Sin. 62 088701 (in Chinese) [包尚联, 杜江, 高嵩 2013 物理学报 62 088701]
[21] Fang S, Wu W C, Ying K, Guo H 2013 Acta Phys. Sin. 62 048702 (in Chinese) [方晟, 吴文川, 应葵, 郭华 2013 物理学报 62 048702]
[22] Zu Z L, Zhou K, Zhang S G, Gao S, Bao S L 2008 Chin. Phys. B 17 328
-
[1] Wedeen V J, Rosene D L, Wang R, Dai G, Mortazavi F, Hagmann P, Kaas J H, Tseng W Y 2012 Science 335 1628
[2] Basser P J, Pierpaoli C 1996 J. Mag. Reson. B 111 209
[3] Hasan K M, Alexander A L, Narayana P A 2004 Magn. Reson. Med. 51 413
[4] Xu D, Cui J, Bansal R, Hao X, Liu J, Chen W, Peterson B S 2009 Magn. Reson. Imag. 27 311
[5] Kang X, Herron T J, Woods D L 2010 Magn. Reson. Imag. 28 546
[6] Skare S, Li T, Nordell B, Ingvar M 2000 Magn. Reson. Imag. 18 659
[7] Klamkin M 1976 Am. Math. Mon. 83 478
[8] Kim Y C, Narayanan S S, Nayak K S 2011 Magn. Reson. Med. 65 1365
[9] Shen Y, Larkman D J, Counsell S, Pu I M, Edwards D, Hajnal J V 2004 Magn. Reson. Med. 52 1184
[10] Fischl B, Sereno M I, Tootell R B, Dale A M 1999 Hum. Brain. Mapp. 8 272
[11] Thompson P, Toga A W 1996 IEEE Trans. Med. Imag. 15 402
[12] van Essen D C, Drury H A, Joshi S, Miller M I 1998 Proc. Natl. Acad. Sci. USA 95 788
[13] Desai R, Liebenthal E, Possing E T, Waldron E, Binder J R 2005 Neuroimage 26 1019
[14] Kang X, Bertrand O, Alho K, Yund E W, Herron T J, Woods D L 2004 Neuroimage 22 1657
[15] van Essen D C 2005 Neuroimage 28 635
[16] Dale A M, Fischl B, Sereno M I 1999 Neuroimage 9 1790
[17] Skare S, Hedehus M, Moseley M E, Li T Q 2000 J. Magn. Reson. 147 340
[18] Gao S, Zu Z L, Bao S L 2008 Chin. Phys. Lett. 25 325
[19] Wang X Y, Lu L, Cheng H Y, Li G Y, Wang H Z, Xu L F, Yu J, Huang Q M, Huang Y, Zhang X L, Wang H 2010 Acta. Phys. Sin. 59 7463 (in Chinese) [王晓琰, 陆伦, 程红岩, 李鲠颖, 汪红志, 许凌峰, 俞捷, 黄清明, 黄勇, 张学龙, 王鹤 2010 物理学报 59 7463]
[20] Bao S L, Du J, Gao S 2013 Acta Phys. Sin. 62 088701 (in Chinese) [包尚联, 杜江, 高嵩 2013 物理学报 62 088701]
[21] Fang S, Wu W C, Ying K, Guo H 2013 Acta Phys. Sin. 62 048702 (in Chinese) [方晟, 吴文川, 应葵, 郭华 2013 物理学报 62 048702]
[22] Zu Z L, Zhou K, Zhang S G, Gao S, Bao S L 2008 Chin. Phys. B 17 328
Catalog
Metrics
- Abstract views: 7147
- PDF Downloads: 392
- Cited By: 0