Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effect of Te doping on oxidation resistance and electronic structure of two-dimensional InSe

Miao Rui-Xia Xie Miao-Chun Cheng Kai Li Tian-Tian Yang Xiao-Feng Wang Ye-Fei Zhang De-Dong

Citation:

Effect of Te doping on oxidation resistance and electronic structure of two-dimensional InSe

Miao Rui-Xia, Xie Miao-Chun, Cheng Kai, Li Tian-Tian, Yang Xiao-Feng, Wang Ye-Fei, Zhang De-Dong
PDF
HTML
Get Citation
  • InSe is a typical two-dimensional (2D) layered semiconductor material, which has excellent electrical properties and moderate adjustable band gap. It is found that InSe has an attractive application prospect in optoelectronic devices. However, some studies have shown that InSe in a single selenium vacancy (Vse) system is easily degraded when exposed to the environment of O2 molecule, which seriously affects the application of InSe in the field of electronic devices. In order to improve the environmental stability of the material, the substitution doping method of Te is proposed in this work. Density functional theory (DFT) is used to analyze the electronic structure, adsorption energy, Bader charge and energy reaction paths of the different systems. It is found that Te substitution doping can significantly improve the stability of InSe. At the same time, the defect state produced by Vse can be eliminated. The specific research results are as follows. First, the dissociation barrier of O2 molecule on Te doped InSe surface (InSe—Te) is as high as 2.67 eV, indicating that Te-doped InSe has a strong antioxidant capacity. Second, the distance between O2 molecule and the surface of InSe—Te is 3.87 Å, and the adsorption energy is only –0.03 eV, indicating that O2 molecules are physically adsorbed on the monolayer surface. Third, Te doping not only improves the antioxidant capacity of the InSe, but also eliminates the defect state produced by Vse. Fourth, the Te-doping obviously eliminates the original Vse defect state or impurity band. The density of states and band structure of Te-doped InSe are almost the same as those of perfect InSe, which can maintain the stability of InSe structure and effectively reduce the damage of oxidation environment to defective InSe monolayer. The results of this study will be helpful in improving the environmental stability of InSe 2D material devices and promoting the research and development of InSe 2D devices.
      Corresponding author: Miao Rui-Xia, miao9508301@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51302215, 62105260, 12004303).
    [1]

    Ang Y S, Cao L M, Ang L K 2021 InfoMat 3 502Google Scholar

    [2]

    Xu K, Yin L, Huang Y, Shifa T A, Chu J W, Wang F, Cheng R Q, Wang Z X, He J 2016 Nanoscale 8 16802Google Scholar

    [3]

    Huang W J, Gan L, Li H Q, Ma Y, Zhai T Y 2016 CrystEngComm 18 3968Google Scholar

    [4]

    Sun Y H, Li Y W, Li T S, Biswas K, Patan A, Zhang L J 2020 Adv. Funct. Mater. 30 2001920Google Scholar

    [5]

    Ma D W, Ju W W, Tang Y N, Chen Y 2017 Appl. Surf. Sci. 426 244Google Scholar

    [6]

    Sun C, Xiang H, Xu B, Xia Y D, Yin J, Liu Z G 2016 Appl. Phys. Express 9 035203Google Scholar

    [7]

    Bandurin D A, Tyurnina A V, Yu G L, Mishchenko A, Zolyomi V, Morozov S V, Kumar R K, Gorbachev R V, Kudrynskyi Z R, Pezzini S, Kovalyuk Z D, Zeitler U, Novoselov K S, Patane A, Eaves L, Grigorieva I V, Fal'ko V I, Geim A K, Cao Y 2017 Nat. Nanotechnol. 12 223Google Scholar

    [8]

    Dai M J, Gao C F, Nie Q F, Wang Q J, Lin Y F, Chu J H, Li W W 2022 Adv. Mater. Technol. 7 2200321Google Scholar

    [9]

    Tamalampudi S R, Lu Y Y, Kumar U R, Sankar R, Liao C D, Moorthy B K, Cheng C H, Chou F C, Chen Y T 2014 Nano Lett. 14 2800Google Scholar

    [10]

    Balakrishnan N, Kudrynskyi Z R, Smith E F, Fay M W, Makarovsky O, Kovalyuk Z D, Eaves L, Beton P H, Patanè A 2017 2D Mater. 4 025043Google Scholar

    [11]

    Shi L, Zhou Q H, Zhao Y H, Ouyang Y X, Ling C Y, Li Q, Wang J L 2017 J. Phys. Chem. C 8 4368Google Scholar

    [12]

    Nan H Y, Guo S J, Cai S, Chen Z R, Zafar A, Zhang X M, Gu X F, Xiao S Q, Ni Z H 2018 Semicond. Sci. Tech. 33 074002Google Scholar

    [13]

    Wang X Y, Nan H Y, Dai W, Lin Q, Liu Z, Gu X F, Ni Z H, Xiao S Q 2019 Appl. Surf. Sci. 467 860Google Scholar

    [14]

    Yang B C, Wan B S, Zhou Q H, Wang Y, Hu W T, Lyu W M, Chen Q, Zeng Z M, Wen F S, Xiang J Y, Yuan S J, Wang J L, Zhang B S, Wang W H, Zhang J Y, Xu B, Zhao Z S, Tian Y J, Liu Z Y 2016 Adv. Mater. 28 9408Google Scholar

    [15]

    Rahman R S, Asokan K, Zulfequar M 2022 J. Phys. Chem. C 126 6065Google Scholar

    [16]

    Li Q, Zheng S X, Pu J B, Wang W Z, Li L, Wang L P 2019 Appl. Surf. Sci. 487 1121Google Scholar

    [17]

    Ding Y, Wang Y L 2015 J. Phys. Chem. C 119 27848Google Scholar

    [18]

    Ma D W, Li T X, Yuan D, He C Z, Lu Z, Lu Z S, Yang Z X, Wang Y X 2018 Appl. Surf. Sci. 434 215Google Scholar

    [19]

    Li X P, Xia C X, Song X H, Du J, Xiong W Q 2017 J. Mater. Sci. 52 7207Google Scholar

    [20]

    Hohenberg P, Kohn W 1964 Phys. Rev. 136 B864Google Scholar

    [21]

    Kohn W, Sham L J 1965 Phys. Rev. 140 A1133Google Scholar

    [22]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758Google Scholar

    [23]

    Wei X, Dong C F, Xu A N, Li X G, MacDonald D D 2018 Phys. Chem. Chem. Phys. 20 2238Google Scholar

    [24]

    Wu X, Vargas M C, Nayak S, Lotrich V, Scoles G 2001 J. Phys. Chem. C 115 8748Google Scholar

    [25]

    刘子媛, 潘金波, 张余洋, 杜世萱 2021 物理学报 70 027301Google Scholar

    Liu Z Y, Pan J B, Zhang Y Y, Du S X 2021 Acta Phys. Sin. 70 027301Google Scholar

    [26]

    Mortensen J J, Hansen L B, Jacobsen K W 2005 Phys. Rev. B 71 035109Google Scholar

    [27]

    Moellmann J, Grimme S 2014 J. Phys. Chem. C 118 7615Google Scholar

    [28]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [29]

    Henkelman G, Uberuaga B P, Jónsson H 2000 J. Phys. Chem. C 113 9901Google Scholar

    [30]

    Kistanov A A, Cai Y Q, Kripalani D R, Zhou K, Dmitriev S V, Zhang Y W 2018 J. Mater. Chem. C 6 4308Google Scholar

    [31]

    孙建平, 缪应蒙, 曹相春 2013 物理学报 62 036301Google Scholar

    Sun J P, Liao Y M, Cao X C 2013 Acta Phys. Sin. 62 036301Google Scholar

    [32]

    林雪玲, 潘凤春 2013 物理学报 62 166102Google Scholar

    Lin X L, Pan F C 2013 Acta Phys. Sin. 62 166102Google Scholar

    [33]

    王应, 李勇, 李宗宝 2016 物理学报 65 037101Google Scholar

    Wang Y, Li Y, Li Z B 2016 Acta Phys. Sin. 65 037101Google Scholar

    [34]

    Guo Y, Zhou S, Bai Y Z, Zhao J J 2017 J. Phys. Chem. C 147 104709Google Scholar

    [35]

    Qiu H, Xu T, Wang Z L, Ren W, Nan H Y, Ni Z H, Chen Q, Yuan S J, Miao F, Song F Q, Long G, Shi Y, Sun L T, Wang J L, Wang X R 2013 Nat. Commun. 4 2642Google Scholar

    [36]

    Meng Y Z, Ling C Y, Xin R, Wang P, Song Y, Bu H J, Gao S, Wang X F, Song F Q, Wang J L, Wang X R, Wang B G, Wang G H 2017 npj Quantum Mater. 2 16Google Scholar

    [37]

    Wang D, Li X B, Sun H B 2017 Nanoscale 9 11619Google Scholar

  • 图 1  (a) 单层InSe晶体结构图 (顶视图和侧视图); (b) 单层InSe态密度图

    Figure 1.  (a) Crystal structure diagrams of InSe monolayer (top view and side view); (b) the calculated density of states of InSe monolayer

    图 2  (a) InSe-Vse晶体结构图 (顶视图以及侧视图); (b) InSe-Vse态密度图

    Figure 2.  (a) Crystal structure diagrams of InSe-Vse (top view and side view); (b) the calculated density of states of InSe-Vse.

    图 3  (a) InSe-Te晶体结构图 (顶视图和侧视图); (b) InSe-Te态密度图

    Figure 3.  (a) Crystal structure diagrams of InSe-Te (top view and side view); (b) the calculated density of states of InSe-Te.

    图 4  完美InSe (a), InSe-Vse (b), InSe-Te (c)的能带结构图

    Figure 4.  Band structures of perfect InSe (a), InSe-Vse (b), and InSe-Te (c).

    图 5  (a) InSe-Te/O2 晶体结构图 (顶视图和侧视图); (b) InSe-Te/O2态密度图

    Figure 5.  (a) Crystal structure diagrams of InSe-Te/O2 (top view and side view); (b) the calculated density of states of InSe-Te/O2.

    图 6  O2分子在InSe-Te表面的吸附位点

    Figure 6.  Adsorption site of O2 molecule on the surface of InSe-Te.

    图 7  O2吸附于InSe-Vse和InSe-Te的差分电荷密度 (a), (d) InSe-Vse/O2; (b), (e) InSe-Vse@O2; (c), (f) InSe-Te/O2. 分子-表面的差分电荷密度($ \Delta \rho $, 等值面设为0.001e/bohr3), 黄色代表电子积累区域($ \Delta \rho > 0 $), 蓝色代表电子缺失区域($ \Delta \rho < 0 $)

    Figure 7.  Differential charge density of O2 adsorbed on InSe-Vse and InSe-Te: (a), (d) InSe-Vse/O2; (b), (e) InSe-Vse@O2; (c), (f) InSe-Te. Differential charge density of molecular-surface ($ \Delta \rho $, the equivalent surface is set to 0.001e/bohr3), yellow represents areas where electrons accumulate ($ \Delta \rho > 0 $), blue is the electron missing region ($ \Delta \rho < 0 $).

    图 8  O2分子在InSe-Te上解离成两个O原子的反应途径, 其中IS, TS和FS 代表初始状态、过渡态和末态

    Figure 8.  Reaction pathway for an O2 molecule to dissociate into two O atom on InSe-Te, including initial state (IS), transition state (TS) and final state (FS).

    图 9  O2分子分别在 (a) 完美InSe和 (b) InSe-Vse表面解离成两个O原子的反应途径, 其中IS, TS, MS和FS 代表初始状态、过渡态、中间态和末态

    Figure 9.  Reaction pathway for an O2 molecule to dissociate into two O atom on (a) InSe-Te and (b) InSe-Vse, including initial state (IS), transition state (TS), intermediate state (MS), and final state (FS).

    表 1  O2分子在InSe-Te表面不同位点的吸附能

    Table 1.  Adsorption energy of O2 molecule at different sites on InSe-Te surface.

    吸附能吸附位点
    $ {T}_{{\rm{T}}{\rm{e}}} $$ {T}_{{\rm{h}}{\rm{o}}{\rm{l}}{\rm{l}}{\rm{o}}{\rm{w}}} $$ {T}_{{\rm{I}}{\rm{n}}} $$ {T}_{{\rm{S}}{\rm{e}}} $$ {T}_{{\rm{S}}{\rm{e}}-{\rm{T}}{\rm{e}}} $$ {T}_{{\rm{I}}{\rm{n}}-{\rm{T}}{\rm{e}}} $
    $ {E}_{{\rm{a}}{\rm{d}}} $/eV–0.03–0.07–0.08–0.05–0.07–0.05
    DownLoad: CSV

    表 2  O2在完美InSe, InSe-Te, InSe-Vse表面的吸附能($ {{E}}_{\rm{ad}} $)、电荷转移量($ {\Delta {n}}_{\rm{e}} $)、O—O键长(d)以及原子距离高度(h)

    Table 2.  Adsorption energy ($ {{E}}_{\rm{ad}} $), charge transfer ($ {\Delta {n}}_{\rm{e}} $), O—O bond length (d) and atomic distance height (h) of O2 on perfect InSe, InSe-Te and InSe-Vse surfaces, respectively.

    ${{E} }_{\rm{ad} }$/eV$ {\Delta {n}}_{\rm{e}}/ e$$ {{d}}_{\rm{O-O}}/ $Å$ {h}/ $Å
    InSe/O2–0.09[18]0.02[18]1.24[18]3.57[18]
    InSe—Te/O2–0.030.011.233.87
    InSe—Vse/O2–0.110.101.241.70
    InSe—Vse@O23.281.231.52
    DownLoad: CSV
  • [1]

    Ang Y S, Cao L M, Ang L K 2021 InfoMat 3 502Google Scholar

    [2]

    Xu K, Yin L, Huang Y, Shifa T A, Chu J W, Wang F, Cheng R Q, Wang Z X, He J 2016 Nanoscale 8 16802Google Scholar

    [3]

    Huang W J, Gan L, Li H Q, Ma Y, Zhai T Y 2016 CrystEngComm 18 3968Google Scholar

    [4]

    Sun Y H, Li Y W, Li T S, Biswas K, Patan A, Zhang L J 2020 Adv. Funct. Mater. 30 2001920Google Scholar

    [5]

    Ma D W, Ju W W, Tang Y N, Chen Y 2017 Appl. Surf. Sci. 426 244Google Scholar

    [6]

    Sun C, Xiang H, Xu B, Xia Y D, Yin J, Liu Z G 2016 Appl. Phys. Express 9 035203Google Scholar

    [7]

    Bandurin D A, Tyurnina A V, Yu G L, Mishchenko A, Zolyomi V, Morozov S V, Kumar R K, Gorbachev R V, Kudrynskyi Z R, Pezzini S, Kovalyuk Z D, Zeitler U, Novoselov K S, Patane A, Eaves L, Grigorieva I V, Fal'ko V I, Geim A K, Cao Y 2017 Nat. Nanotechnol. 12 223Google Scholar

    [8]

    Dai M J, Gao C F, Nie Q F, Wang Q J, Lin Y F, Chu J H, Li W W 2022 Adv. Mater. Technol. 7 2200321Google Scholar

    [9]

    Tamalampudi S R, Lu Y Y, Kumar U R, Sankar R, Liao C D, Moorthy B K, Cheng C H, Chou F C, Chen Y T 2014 Nano Lett. 14 2800Google Scholar

    [10]

    Balakrishnan N, Kudrynskyi Z R, Smith E F, Fay M W, Makarovsky O, Kovalyuk Z D, Eaves L, Beton P H, Patanè A 2017 2D Mater. 4 025043Google Scholar

    [11]

    Shi L, Zhou Q H, Zhao Y H, Ouyang Y X, Ling C Y, Li Q, Wang J L 2017 J. Phys. Chem. C 8 4368Google Scholar

    [12]

    Nan H Y, Guo S J, Cai S, Chen Z R, Zafar A, Zhang X M, Gu X F, Xiao S Q, Ni Z H 2018 Semicond. Sci. Tech. 33 074002Google Scholar

    [13]

    Wang X Y, Nan H Y, Dai W, Lin Q, Liu Z, Gu X F, Ni Z H, Xiao S Q 2019 Appl. Surf. Sci. 467 860Google Scholar

    [14]

    Yang B C, Wan B S, Zhou Q H, Wang Y, Hu W T, Lyu W M, Chen Q, Zeng Z M, Wen F S, Xiang J Y, Yuan S J, Wang J L, Zhang B S, Wang W H, Zhang J Y, Xu B, Zhao Z S, Tian Y J, Liu Z Y 2016 Adv. Mater. 28 9408Google Scholar

    [15]

    Rahman R S, Asokan K, Zulfequar M 2022 J. Phys. Chem. C 126 6065Google Scholar

    [16]

    Li Q, Zheng S X, Pu J B, Wang W Z, Li L, Wang L P 2019 Appl. Surf. Sci. 487 1121Google Scholar

    [17]

    Ding Y, Wang Y L 2015 J. Phys. Chem. C 119 27848Google Scholar

    [18]

    Ma D W, Li T X, Yuan D, He C Z, Lu Z, Lu Z S, Yang Z X, Wang Y X 2018 Appl. Surf. Sci. 434 215Google Scholar

    [19]

    Li X P, Xia C X, Song X H, Du J, Xiong W Q 2017 J. Mater. Sci. 52 7207Google Scholar

    [20]

    Hohenberg P, Kohn W 1964 Phys. Rev. 136 B864Google Scholar

    [21]

    Kohn W, Sham L J 1965 Phys. Rev. 140 A1133Google Scholar

    [22]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758Google Scholar

    [23]

    Wei X, Dong C F, Xu A N, Li X G, MacDonald D D 2018 Phys. Chem. Chem. Phys. 20 2238Google Scholar

    [24]

    Wu X, Vargas M C, Nayak S, Lotrich V, Scoles G 2001 J. Phys. Chem. C 115 8748Google Scholar

    [25]

    刘子媛, 潘金波, 张余洋, 杜世萱 2021 物理学报 70 027301Google Scholar

    Liu Z Y, Pan J B, Zhang Y Y, Du S X 2021 Acta Phys. Sin. 70 027301Google Scholar

    [26]

    Mortensen J J, Hansen L B, Jacobsen K W 2005 Phys. Rev. B 71 035109Google Scholar

    [27]

    Moellmann J, Grimme S 2014 J. Phys. Chem. C 118 7615Google Scholar

    [28]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [29]

    Henkelman G, Uberuaga B P, Jónsson H 2000 J. Phys. Chem. C 113 9901Google Scholar

    [30]

    Kistanov A A, Cai Y Q, Kripalani D R, Zhou K, Dmitriev S V, Zhang Y W 2018 J. Mater. Chem. C 6 4308Google Scholar

    [31]

    孙建平, 缪应蒙, 曹相春 2013 物理学报 62 036301Google Scholar

    Sun J P, Liao Y M, Cao X C 2013 Acta Phys. Sin. 62 036301Google Scholar

    [32]

    林雪玲, 潘凤春 2013 物理学报 62 166102Google Scholar

    Lin X L, Pan F C 2013 Acta Phys. Sin. 62 166102Google Scholar

    [33]

    王应, 李勇, 李宗宝 2016 物理学报 65 037101Google Scholar

    Wang Y, Li Y, Li Z B 2016 Acta Phys. Sin. 65 037101Google Scholar

    [34]

    Guo Y, Zhou S, Bai Y Z, Zhao J J 2017 J. Phys. Chem. C 147 104709Google Scholar

    [35]

    Qiu H, Xu T, Wang Z L, Ren W, Nan H Y, Ni Z H, Chen Q, Yuan S J, Miao F, Song F Q, Long G, Shi Y, Sun L T, Wang J L, Wang X R 2013 Nat. Commun. 4 2642Google Scholar

    [36]

    Meng Y Z, Ling C Y, Xin R, Wang P, Song Y, Bu H J, Gao S, Wang X F, Song F Q, Wang J L, Wang X R, Wang B G, Wang G H 2017 npj Quantum Mater. 2 16Google Scholar

    [37]

    Wang D, Li X B, Sun H B 2017 Nanoscale 9 11619Google Scholar

  • [1] Yan Xiao-Tong, Hou Yu-Hua, Zheng Shou-Hong, Huang You-Lin, Tao Xiao-Ma. First-principles study of effects of Ga, Ge and As doping on electrochemical properties and electronic structure of Li2CoSiO4 serving as cathode material for Li-ion batteries. Acta Physica Sinica, 2019, 68(18): 187101. doi: 10.7498/aps.68.20190503
    [2] Song Qing-Gong, Wang Li-Jie, Zhu Yan-Xia, Kang Jian-Hai, Gu Wei-Feng, Wang Ming-Chao, Liu Zhi-Feng. Effects of Si and Y co-doping on stability and oxidation resistance of γ-TiAl based alloys. Acta Physica Sinica, 2019, 68(19): 196101. doi: 10.7498/aps.68.20190490
    [3] Wang Guan-Shi,  Lin Yan-Ming,  Zhao Ya-Li,  Jiang Zhen-Yi,  Zhang Xiao-Dong. Electronic and optical performances of (Cu, N) codoped TiO2/MoS2 heterostructure photocatalyst: Hybrid DFT (HSE06) study. Acta Physica Sinica, 2018, 67(23): 233101. doi: 10.7498/aps.67.20181520
    [4] Qi Yu-Min, Chen Heng-Li, Jin Peng, Lu Hong-Yan, Cui Chun-Xiang. First-principles study of electronic structures and optical properties of Mn and Cu doped potassium hexatitanate (K2Ti6O13). Acta Physica Sinica, 2018, 67(6): 067101. doi: 10.7498/aps.67.20172356
    [5] Xu Jing, Liang Jia-Qing, Li Hong-Ping, Li Chang-Sheng, Liu Xiao-Juan, Meng Jian. First-principles study on the electronic structure of Ti-doped NbSe2. Acta Physica Sinica, 2015, 64(20): 207101. doi: 10.7498/aps.64.207101
    [6] Zhu Xue-Wen, Xu Li-Chun, Liu Rui-Ping, Yang Zhi, Li Xiu-Yan. N-F co-doped in titaninum dioxide nanotube of the anatase (101) surface: a first-principles study. Acta Physica Sinica, 2015, 64(14): 147103. doi: 10.7498/aps.64.147103
    [7] Gao Tan-Hua. Magnetic and electronic properties of fluorographene sheet with foreign atom substitutions. Acta Physica Sinica, 2014, 63(4): 046102. doi: 10.7498/aps.63.046102
    [8] Wang Ping, Guo Li-Xin, Yang Yin-Tang, Zhang Zhi-Yong. First-principles study on electronic structures of Al, N Co-doped ZnO nanotubes. Acta Physica Sinica, 2013, 62(5): 056105. doi: 10.7498/aps.62.056105
    [9] Wu Mu-Sheng, Xu Bo, Liu Gang, Ouyang Chu-Ying. First-principles study on the electronic structures of Cr- and W-doped single-layer MoS2. Acta Physica Sinica, 2013, 62(3): 037103. doi: 10.7498/aps.62.037103
    [10] Yang Shuang-Bo. Effect of doping concentration and doping thickness on the structure of electronic state of the Si uniformly doped GaAs quantum well. Acta Physica Sinica, 2013, 62(15): 157301. doi: 10.7498/aps.62.157301
    [11] Wu Bao-Jia, Li Yan, Peng Gang, Gao Chun-Xiao. Electrical transport properties of InSe under high pressure. Acta Physica Sinica, 2013, 62(14): 140702. doi: 10.7498/aps.62.140702
    [12] Xu Jin-Rong, Wang Ying, Zhu Xing-Feng, Li Ping, Zhang Li. First-principles study of N-doped and N-V co-doped anatase TiO2. Acta Physica Sinica, 2012, 61(20): 207103. doi: 10.7498/aps.61.207103
    [13] Wang Ying-Long, Wang Xiu-Li, Liang Wei-Hua, Guo Jian-Xin, Ding Xue-Cheng, Chu Li-Zhi, Deng Ze-Chao, Fu Guang-Sheng. First principles study of electronic and optical properties of Er-doped silicon nanoparticles with different densities. Acta Physica Sinica, 2011, 60(12): 127302. doi: 10.7498/aps.60.127302
    [14] Zhang Yun, Shao Xiao-Hong, Wang Zhi-Qiang. A first principle study on p-type doped 3C-SiC. Acta Physica Sinica, 2010, 59(8): 5652-5660. doi: 10.7498/aps.59.5652
    [15] Liang Wei-Hua, Ding Xue-Cheng, Chu Li-Zhi, Deng Ze-Chao, Guo Jian-Xin, Wu Zhuan-Hua, Wang Ying-Long. First-principles study of electronic and optical properties of Ni-doped silicon nanowires. Acta Physica Sinica, 2010, 59(11): 8071-8077. doi: 10.7498/aps.59.8071
    [16] Xu Xin-Fa, Shao Xiao-Hong. Calculation of the electronic structure of Y-doped SrTiO3. Acta Physica Sinica, 2009, 58(3): 1908-1916. doi: 10.7498/aps.58.1908
    [17] Guo Jian-Yun, Zheng Guang, He Kai-Hua, Chen Jing-Zhong. First-principles study on electronic structure and optical properties of Al and Mg doped GaN. Acta Physica Sinica, 2008, 57(6): 3740-3746. doi: 10.7498/aps.57.3740
    [18] Shen Yi-Bin, Zhou Xun, Xu Ming, Ding Ying-Chun, Duan Man-Yi, Linghu Rong-Feng, Zhu Wen-Jun. Electronic structure and optical properties of ZnO doped with transition metals. Acta Physica Sinica, 2007, 56(6): 3440-3445. doi: 10.7498/aps.56.3440
    [19] Ding Ying-Chun, Xiang An-Ping, Xu Ming, Zhu Wen-Jun. Electrical structures and optical properties of doped earth element (Y,La) in γ-Si3N4. Acta Physica Sinica, 2007, 56(10): 5996-6002. doi: 10.7498/aps.56.5996
    [20] Zhang Jia-Hong, Ma Rong, Liu Su, Liu Mei. First-principles calculations on the superconductivity and magnetism of doping MgCNi3. Acta Physica Sinica, 2006, 55(9): 4816-4821. doi: 10.7498/aps.55.4816
Metrics
  • Abstract views:  2045
  • PDF Downloads:  58
  • Cited By: 0
Publishing process
  • Received Date:  01 January 2023
  • Accepted Date:  23 March 2023
  • Available Online:  21 April 2023
  • Published Online:  20 June 2023

/

返回文章
返回