Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Study on the electronic structures and the optical absorption mechanism of In2O3 crystals

Liu Jian Liu Ting-Yu Li Hai-Xin Liu Feng-Ming

Citation:

Study on the electronic structures and the optical absorption mechanism of In2O3 crystals

Liu Jian, Liu Ting-Yu, Li Hai-Xin, Liu Feng-Ming
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Indium oxide with its wide gap is a multifunctional semiconductor material, which has gained application in many areas. Indium oxide films show high electrical property and high transparency, which have been applied in OLED display, flat-panel display, thin film solar cells, etc. However, the mechanisms of both high electrical and high transparent properties are still not clear up to now. So in this paper, the electronic structures of the In2O3 crystals are studied by GGA, GGA+U, HSE06 and G0W0 corrections. The mechanisms of optical transition and formation of transparent electrode in In2O3 crystals are studied using Hedin's G0W0 approximation and the Bethe-Salpeter equation. The complex refractive index, complex dielectric function and optical absorption spectrum of the In2O3 crystal have been obtained, which are in good agreement with experimental results. By analyzing the quasi-particle band structures, optical transition matrix and optical absorption spectrum, the mechanisms of optical transition and formation of transparent electrode in In2O3 can be interpreted. BSE (Bethe-Salpeter equation) calculation results show that the transition from 8 to 1 is permitted, however, the transition probability is far less than that from 10 to 1. This is because, for 8 to 1 transition, there are three even symmetry bands and two odd symmetry bands, in which only the transition from two odd symmetry bands to the conduction band is permitted. Other causes for this phenomenon are that in the In2O3 primitive cell there exist some overlapping bands, which result in the false transition. Therefore, this work argues that in the In2O3 crystals optical band gap is 4.167 eV, which corresponds to the direct transition from 10 to 1. This result will help understand the mechanisms of optical transition and the transparent electrode in In2O3.
      Corresponding author: Liu Ting-Yu, liuyyxj@163.com
    • Funds: Project supported by the Hujiang Foundation, China (Grant No. B14004).
    [1]

    Gordon R G 2000 MRS Bull. 25 52

    [2]

    Hartnagel H L, Dawar A K J, Jagadish C 1995 Semiconducting Transparent Thin Films (Bristol: Institute of Physics Publishing), 110-126

    [3]

    Hung L S, Chen C H 2002 Mater. Sci. Eng.: R: Reports 39 143

    [4]

    Matino F, Persano L, Arima V, Pisignano D, Blyth RIR, Cingolani R, Rinaldi Ross 2005 Phys. Rev. B 72 085437

    [5]

    Zhao H X, Chen X L, Yang X, Du J, Bai L S, Chen Z, Zhao Y, Zhang X D 2014 Acta Phys. Sin. 63 056801(in Chinese) [赵慧旭, 陈新亮, 杨旭, 杜建, 白立沙, 陈泽, 赵颖, 张晓丹 2014 物理学报 63 056801]

    [6]

    Hashimoto R, Abe Y, Nakada T 2008 App. Phys. Express 1 015002

    [7]

    Gupta R K, Ghosh K, Mishra S R, Kahol P K 2008 Thin Solid Films 516 3204

    [8]

    Granqvist C G, Hultker A 2002 Thin Solid Films 411 1

    [9]

    Murali K R, Elango P, Andavan P, Venkatachalam K 2008 J. Mater. Sci.-Mate. in Electron. 19 289

    [10]

    Kundakci M, Grbulak B, Doğan S, Ate A, Yildirim M 2008 App. Phys. A 90 479

    [11]

    Bouabid K, Ihlal A, Amira Y, Sdaq A, Outzourhit A, Nouet G 2007 The Eur. Phys. J. Appl. Phys. 40 149

    [12]

    Jiang D Y, Shen D Z, Liu K W, Shan C X, Zhao Y M, Yang T, Yao B, Lu Y M, Zhang J Y 2008 Semicond. Sci. Technol. 23 035002

    [13]

    Weiher R L, Ley R P 1966 J. Appl. Phys. 37 299

    [14]

    Saha S, Pal U, Chaudhuri A K, Rao V V, Banerjee H D 1989 Phys. Status Solidi A 114 721

    [15]

    Galdikas A, Mironas A, Senulienc D, etkus A 1998 Thin solid films 323 275

    [16]

    Novkovski N, Tanuevski A 2008 Semicond. Sci. Technol. 23 095012

    [17]

    Walsh A, Silva J L F D, Wei S H, Krber C, Klein A, Piper L F J, Demasi A, Smith K E, Panaccione G, Torelli P 2008 Phys. Rev. Lett. 100 167402

    [18]

    goston P, Erhart P, Klein A, Albe K 2009 J. Phys. Condens. Matter 21 455801

    [19]

    Erhart P, Klein A, Egdell R G, Albe K 2007 Phys. Rev. B 75 153205

    [20]

    King P D C, Veal T D, Fuchs F, Wang C Y, Payne D J, Bourlange A, Zhang H, Bell G R, V. Cimalla, Ambacher O, Egdell R G, Bechstedt F, McConville C F 2009 Phys. Rev. B 79 205211

    [21]

    Luttinger J M, Ward J C 1960 Phys. Rev. 118 1417

    [22]

    Rinke P, Schleife A, Kioupakis E, Janotti A, Rdl C, Bechstedt F, Scheffler M, Van De Walle C G 2012 Phys. Rev. Lett. 108 126404

    [23]

    Gao S P, Zhu T 2012 Acta Phys. Sin. 61 137103(in Chinese) [高尚鹏, 祝桐 2012 物理学报 61 137103]

    [24]

    Rinke P, Janotti A, Scheffler M, Van De Walle C G 2009 Phys. Rev. Lett. 102 026402

    [25]

    Onida G, Reining L, Rubio A 2002 Rev. Mod. Phys. 74 601

    [26]

    F Fuchs, C Rdl, A Schleife, F Bechstedt 2008 Phys. Rev. B 78 085103

    [27]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169

    [28]

    Kresse G, Furthmller J 1996 Comput. Mater. Sci. 6 15

    [29]

    Mostofi A A, Yates J R, Lee Y S, Souza I, Vanderbilt D, Marzari N 2008 Comput. Phys. Commun. 178 685

    [30]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [31]

    Blchl P E 1994 Phys. Rev. B 50 17953

    [32]

    Kresse G, Jouber Dt 1999 Phys. Rev. B 59 1758

    [33]

    Fuchs F, Bechstedt F 2008 Phys. Rev. B 77 155107

  • [1]

    Gordon R G 2000 MRS Bull. 25 52

    [2]

    Hartnagel H L, Dawar A K J, Jagadish C 1995 Semiconducting Transparent Thin Films (Bristol: Institute of Physics Publishing), 110-126

    [3]

    Hung L S, Chen C H 2002 Mater. Sci. Eng.: R: Reports 39 143

    [4]

    Matino F, Persano L, Arima V, Pisignano D, Blyth RIR, Cingolani R, Rinaldi Ross 2005 Phys. Rev. B 72 085437

    [5]

    Zhao H X, Chen X L, Yang X, Du J, Bai L S, Chen Z, Zhao Y, Zhang X D 2014 Acta Phys. Sin. 63 056801(in Chinese) [赵慧旭, 陈新亮, 杨旭, 杜建, 白立沙, 陈泽, 赵颖, 张晓丹 2014 物理学报 63 056801]

    [6]

    Hashimoto R, Abe Y, Nakada T 2008 App. Phys. Express 1 015002

    [7]

    Gupta R K, Ghosh K, Mishra S R, Kahol P K 2008 Thin Solid Films 516 3204

    [8]

    Granqvist C G, Hultker A 2002 Thin Solid Films 411 1

    [9]

    Murali K R, Elango P, Andavan P, Venkatachalam K 2008 J. Mater. Sci.-Mate. in Electron. 19 289

    [10]

    Kundakci M, Grbulak B, Doğan S, Ate A, Yildirim M 2008 App. Phys. A 90 479

    [11]

    Bouabid K, Ihlal A, Amira Y, Sdaq A, Outzourhit A, Nouet G 2007 The Eur. Phys. J. Appl. Phys. 40 149

    [12]

    Jiang D Y, Shen D Z, Liu K W, Shan C X, Zhao Y M, Yang T, Yao B, Lu Y M, Zhang J Y 2008 Semicond. Sci. Technol. 23 035002

    [13]

    Weiher R L, Ley R P 1966 J. Appl. Phys. 37 299

    [14]

    Saha S, Pal U, Chaudhuri A K, Rao V V, Banerjee H D 1989 Phys. Status Solidi A 114 721

    [15]

    Galdikas A, Mironas A, Senulienc D, etkus A 1998 Thin solid films 323 275

    [16]

    Novkovski N, Tanuevski A 2008 Semicond. Sci. Technol. 23 095012

    [17]

    Walsh A, Silva J L F D, Wei S H, Krber C, Klein A, Piper L F J, Demasi A, Smith K E, Panaccione G, Torelli P 2008 Phys. Rev. Lett. 100 167402

    [18]

    goston P, Erhart P, Klein A, Albe K 2009 J. Phys. Condens. Matter 21 455801

    [19]

    Erhart P, Klein A, Egdell R G, Albe K 2007 Phys. Rev. B 75 153205

    [20]

    King P D C, Veal T D, Fuchs F, Wang C Y, Payne D J, Bourlange A, Zhang H, Bell G R, V. Cimalla, Ambacher O, Egdell R G, Bechstedt F, McConville C F 2009 Phys. Rev. B 79 205211

    [21]

    Luttinger J M, Ward J C 1960 Phys. Rev. 118 1417

    [22]

    Rinke P, Schleife A, Kioupakis E, Janotti A, Rdl C, Bechstedt F, Scheffler M, Van De Walle C G 2012 Phys. Rev. Lett. 108 126404

    [23]

    Gao S P, Zhu T 2012 Acta Phys. Sin. 61 137103(in Chinese) [高尚鹏, 祝桐 2012 物理学报 61 137103]

    [24]

    Rinke P, Janotti A, Scheffler M, Van De Walle C G 2009 Phys. Rev. Lett. 102 026402

    [25]

    Onida G, Reining L, Rubio A 2002 Rev. Mod. Phys. 74 601

    [26]

    F Fuchs, C Rdl, A Schleife, F Bechstedt 2008 Phys. Rev. B 78 085103

    [27]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169

    [28]

    Kresse G, Furthmller J 1996 Comput. Mater. Sci. 6 15

    [29]

    Mostofi A A, Yates J R, Lee Y S, Souza I, Vanderbilt D, Marzari N 2008 Comput. Phys. Commun. 178 685

    [30]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [31]

    Blchl P E 1994 Phys. Rev. B 50 17953

    [32]

    Kresse G, Jouber Dt 1999 Phys. Rev. B 59 1758

    [33]

    Fuchs F, Bechstedt F 2008 Phys. Rev. B 77 155107

  • [1] Liu Chen-Xi, Pang Guo-Wang, Pan Duo-Qiao, Shi Lei-Qian, Zhang Li-Li, Lei Bo-Cheng, Zhao Xu-Cai, Huang Yi-Neng. First-principles study of influence of electric field on electronic structure and optical properties of GaN/g-C3N4 heterojunction. Acta Physica Sinica, 2022, 71(9): 097301. doi: 10.7498/aps.71.20212261
    [2] Xing Hai-Ying, Zheng Zhi-Jian, Zhang Zi-Han, Wu Wen-Jing, Guo Zhi-Ying. Tunable electronic structure and optical properties of BlueP/X Te2 (X = Mo, W) van der Waals heterostructures by strain. Acta Physica Sinica, 2021, 70(6): 067101. doi: 10.7498/aps.70.20201728
    [3] Pan Feng-Chun, Lin Xue-Ling, Cao Zhi-Jie, Li Xiao-Fu. Electronic structures and optical properties of Fe, Co, and Ni doped GaSb. Acta Physica Sinica, 2019, 68(18): 184202. doi: 10.7498/aps.68.20190290
    [4] Hu Yong-Jin, Wu Yun-Pei, Liu Guo-Ying, Luo Shi-Jun, He Kai-Hua. Structural phase transition, electronic structures and optical properties of ZnTe. Acta Physica Sinica, 2015, 64(22): 227802. doi: 10.7498/aps.64.227802
    [5] Wu Qiong, Liu Jun, Dong Qian-Min, Liu Yang, Liang Pei, Shu Hai-Bo. Quantum confinement effect on electronic and optical properties of SnS. Acta Physica Sinica, 2014, 63(6): 067101. doi: 10.7498/aps.63.067101
    [6] Li Jian-Hua, Cui Yuan-Shun, Zeng Xiang-Hua, Chen Gui-Bin. Investigations of structural phase transition, electronic structures and optical properties in ZnS. Acta Physica Sinica, 2013, 62(7): 077102. doi: 10.7498/aps.62.077102
    [7] Pan Lei, Lu Tie-Cheng, Su Rui, Wang Yue-Zhong, Qi Jian-Qi, Fu Jia, Zhang Yi, He Duan-Wei. Study of electronic structure and optical propertise of -AlON crystal. Acta Physica Sinica, 2012, 61(2): 027101. doi: 10.7498/aps.61.027101
    [8] Jiao Zhao-Yong, Yang Ji-Fei, Zhang Xian-Zhou, Ma Shu-Hong, Guo Yong-Liang. Theoretical investigation of elastic, electronic, and optical properties of zinc-blende structure GaN under high pressure. Acta Physica Sinica, 2011, 60(11): 117103. doi: 10.7498/aps.60.117103
    [9] Wang Hong-Yan, Zhang Zhi-Dong, Zhang Zhong-Yue, Sun Zhong-Hua. Optical properties of gold nanoring structures. Acta Physica Sinica, 2011, 60(4): 047808. doi: 10.7498/aps.60.047808
    [10] Li Xu-Zhen, Xie Quan, Chen Qian, Zhao Feng-Juan, Cui Dong-Meng. The study on the electronic structure and optical properties of OsSi2. Acta Physica Sinica, 2010, 59(3): 2016-2021. doi: 10.7498/aps.59.2016
    [11] Shi Li-Bin, Li Rong-Bing, Cheng Shuang, Li Ming-Biao. A study on electronic structure and optical properties of Zn1-xBexO. Acta Physica Sinica, 2009, 58(9): 6446-6452. doi: 10.7498/aps.58.6446
    [12] Hu Zhi-Gang, Duan Man-Yi, Xu Ming, Zhou Xun, Chen Qing-Yun, Dong Cheng-Jun, Linghu Rong-Feng. Electronic structure and optical properties of ZnO doped with Fe and Ni. Acta Physica Sinica, 2009, 58(2): 1166-1172. doi: 10.7498/aps.58.1166
    [13] Li Xiao-Feng, Ji Guang-Fu, Peng Wei-Min, Shen Xiao-Meng, Zhao Feng. Elastic constants, electronic structure and optical properties of solid krypton under pressure by first-principles calculations. Acta Physica Sinica, 2009, 58(4): 2660-2666. doi: 10.7498/aps.58.2660
    [14] Guo Jian-Yun, Zheng Guang, He Kai-Hua, Chen Jing-Zhong. First-principles study on electronic structure and optical properties of Al and Mg doped GaN. Acta Physica Sinica, 2008, 57(6): 3740-3746. doi: 10.7498/aps.57.3740
    [15] Duan Man-Yi, Xu Ming, Zhou Hai-Ping, Chen Qing-Yun, Hu Zhi-Gang, Dong Cheng-Jun. Electronic structure and optical properties of ZnO doped with carbon. Acta Physica Sinica, 2008, 57(10): 6520-6525. doi: 10.7498/aps.57.6520
    [16] Xing Hai-Ying, Fan Guang-Han, Zhao De-Gang, He Miao, Zhang Yong, Zhou Tian-Ming. Electronic structure and optical properties of GaN with Mn-doping. Acta Physica Sinica, 2008, 57(10): 6513-6519. doi: 10.7498/aps.57.6513
    [17] Guan Li, Liu Bao-Ting, Li Xu, Zhao Qing-Xun, Wang Ying-Long, Guo Jian-Xin, Wang Shu-Biao. Electronic structure and optical properties of fluorite-structure TiO2. Acta Physica Sinica, 2008, 57(1): 482-487. doi: 10.7498/aps.57.482
    [18] Ding Ying-Chun, Xiang An-Ping, Xu Ming, Zhu Wen-Jun. Electrical structures and optical properties of doped earth element (Y,La) in γ-Si3N4. Acta Physica Sinica, 2007, 56(10): 5996-6002. doi: 10.7498/aps.56.5996
    [19] Shen Yi-Bin, Zhou Xun, Xu Ming, Ding Ying-Chun, Duan Man-Yi, Linghu Rong-Feng, Zhu Wen-Jun. Electronic structure and optical properties of ZnO doped with transition metals. Acta Physica Sinica, 2007, 56(6): 3440-3445. doi: 10.7498/aps.56.3440
    [20] Pan Hong-Zhe, Xu Ming, Zhu Wen-Jun, Zhou Hai-Ping. First-principles study on the electrical structures and optical properties of β-Si3N4. Acta Physica Sinica, 2006, 55(7): 3585-3589. doi: 10.7498/aps.55.3585
Metrics
  • Abstract views:  7114
  • PDF Downloads:  361
  • Cited By: 0
Publishing process
  • Received Date:  26 April 2015
  • Accepted Date:  01 June 2015
  • Published Online:  05 October 2015

/

返回文章
返回